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ABSTRACT: 

Climate change causes increasingly longer periods of drought, often causing the death of plants, 

especially when they are in the early stages of development. Studying the benefits provided by 

arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and 

sustainable strategy to face climate change. Thus, this study investigated the influence of AM 

fungi on Handroanthus serratifolius seedlings under different water regimes, based on 

biochemical, and nutritional growth parameters. The experiment was carried out in H. 

serratifolius seedlings cultivated with mycorrhizas (+AMF) and without mycorrhizas (-AMF) 

in three water regimes; a severe water deficit (SD), a moderate water deficit (MD), and a well-

watered (WW) condition. AM fungi provided greater osmoregulation under water deficit 

conditions through the accumulation of soluble sugars, total free amino acids, and proline, as 

well as by reducing sugar. The increase in the absorption of phosphorus and nitrate was 

observed only in the presence of fungi in the well-watered regimen. A higher percentage of 

colonization was found in plants submitted to the well-watered regimen. Ultimately, AM fungi 

promoted biochemical, nutritional, and growth benefits for H. serratifolius seedlings under the 

water deficit and well-hydrated conditions, proving that AMF can be used to increase the 

tolerance of H. serratifolius plants, and help them to survive climate change.  

 

Keywords: Mycorrhizal association. Plant physiology. AM fungi. Osmoregulation. Proline. 

Yellow ipê. 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMO  

As mudanças climáticas provocam períodos de seca cada vez mais prolongados, muitas vezes 

provocando a morte das plantas, sobretudo quando se encontram nas fases iniciais do 

desenvolvimento. Estudar os benefícios proporcionados pelos fungos micorrízicos arbusculares 

(MA) às plantas em diferentes regimes hídricos é uma estratégia eficiente e sustentável para 

enfrentar as mudanças climáticas. Assim, este estudo investigou a influência de fungos MA em 

mudas de Handroanthus serratifolius sob diferentes regimes hídricos, com base em parâmetros 

bioquímicos e nutricionais de crescimento. O experimento foi conduzido em mudas de H. 

serratifolius cultivadas com micorrizas (+FMA) e sem micorrizas (-FMA) em três regimes 

hídricos; um déficit hídrico severo (DS), um déficit hídrico moderado (DM) e uma condição 

bem irrigada (BI). Os fungos MA proporcionaram maior osmorregulação em condições de 

déficit hídrico por meio do acúmulo de açúcares solúveis, aminoácidos livres totais e prolina, 

bem como por açúcares redutores. O aumento na absorção de fósforo e nitrato foi observado 

apenas na presença de fungos no regime bem irrigado. Maior porcentagem de colonização foi 

encontrada em plantas submetidas ao regime bem irrigado. Por fim, os fungos MA promoveram 

benefícios bioquímicos, nutricionais e de crescimento para mudas de H. serratifolius sob déficit 

hídrico e condições bem hidratadas, provando que os FMA podem ser usados para aumentar a 

tolerância das plantas de H. serratifolius e ajudá-las a sobreviver às mudanças climáticas.  

 

Palavras-chave: Associação micorrízica. Fisiologia vegetal. Fungos AM. Osmorregulação. 

Prolina. Ipê amarelo. 



¹ O artigo apresentado foi redigido conforme as diretrizes de submissão da revista plants. As normas indicadas para a redação 

de artigos pela revista estão disponíveis no link: https://www.mdpi.com/journal/plants/instructions 
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Arbuscular Mycorrhizal Fungi Promote Physiological and
Biochemical Advantages in Handroanthus serratifolius
Seedlings Submitted to Different Water Deficits
Tatiane Santos Correia * , Túlio Silva Lara, Jéssica Aires dos Santos, Ludyanne da Silva Sousa
and Marcos Diones Ferreira Santana

Institute of Water Science and Technology, Federal University of Western Para, Santarém 68040-255, Brazil
* Correspondence: statianecorreia@gmail.com; Tel.: +55-93-991660461

Abstract: Climate change causes increasingly longer periods of drought, often causing the death of
plants, especially when they are in the early stages of development. Studying the benefits provided
by arbuscular mycorrhizal (AM) fungi to plants in different water regimes is an efficient and sus-
tainable strategy to face climate change. Thus, this study investigated the influence of AM fungi
on Handroanthus serratifolius seedlings under different water regimes, based on biochemical, and
nutritional growth parameters. The experiment was carried out in H. serratifolius seedlings cultivated
with mycorrhizas (+AMF) and without mycorrhizas (-AMF) in three water regimes; a severe water
deficit (SD), a moderate water deficit (MD), and a well-watered (WW) condition. AM fungi provided
greater osmoregulation under water deficit conditions through the accumulation of soluble sugars,
total free amino acids, and proline, as well as by reducing sugar. The increase in the absorption of
phosphorus and nitrate was observed only in the presence of fungi in the well-watered regimen.
A higher percentage of colonization was found in plants submitted to the well-watered regimen.
Ultimately, AM fungi promoted biochemical, nutritional, and growth benefits for H. serratifolius
seedlings under the water deficit and well-hydrated conditions, proving that AMF can be used to
increase the tolerance of H. serratifolius plants, and help them to survive climate change.

Keywords: mycorrhizal association; plant physiology; AM fungi; osmoregulation; proline; yellow ipê

1. Introduction

In recent decades, with the increase in global warming and climate change, water
scarcity has increased considerably [1] and has become one of the main problems in world
agriculture, as it directly affects crop development and yield [2]. However, the negative
effects of water scarcity also affect tropical forests, causing high tree mortality [3], in
addition to strongly altering the regional carbon balance, thereby accelerating and making
the effects of negative climate change even more dramatic [4]. Forest replacement or
recovery efforts can help to conserve regions affected by deforestation, for example, and
contribute to the minimization of these effects, but plants in the growth phase are even
more susceptible to water deficit than adult plants [5–7].

Water deficits stimulate the accumulation of abscisic acid, which is responsible for
closing the stomata, reducing gas exchange and consequently limiting photosynthesis,
which can cause death by carbon starvation and total depletion of plant reserves [8]. It also
causes a drop in the water potential of the plant, which can result in xylem cavitation; this
occurs when liquid water passes into the vapor phase within the xylem, resulting in the
formation of air bubbles that then cause embolisms [9,10].

A good solution for this issue is to explore the influence of arbuscular mycorrhizal
(AM) fungi on the development of forest species under well-watered and water stress
conditions [11,12]. These fungi improve the plant’s growth and development [13] due to
greater absorption of nutrients, mainly phosphorus (P) and nitrogen (N) [14,15], and by
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encouraging biochemical changes, such as osmotic adjustment from the accumulation of
organic and inorganic solutes, such as proline, soluble sugars, total free amino acids, and
ions [16]. Accumulation of these solutes is a strategy plants use to better tolerate water
stress, as the accumulation reduces cellular osmotic potential, and increases cellular water
retention during water stress [17], keeping the stomata open, and, consequently retaining
gas exchange. The solutes act as osmoprotective agents.

Among the forest species suitable for environmental recovery, Handroanthus serratifolius
(Vahl) SO Grose, popularly known as yellow ipê, stands out. This species is native to South
America, with a wide distribution in Brazil and a long history of use in reforestation and
landscaping. The wood has high commercial value, while the leaves and flowers present
pharmacological potential [18–21]. Despite its importance, there are very few reports in
the literature of studies involving AM fungi and H. serratifolius. There are some studies
with the genus Handroanthus demonstrating that AMF inoculation provided an increase in
height, biomass, and calcium and nitrogen content by up to 10%. [22,23].

However, the choice of AM fungi may be a determining factor in the interaction
between AMF-plant species. As a result, the savanna area, located in the west of Pará state,
Brazil, surrounded by the Amazon Forest, an area characterized by a period of drought
and nutrient-poor soils, was chosen for the bioprospecting of native AM fungi. In addition,
there is a lack of studies aimed at understanding the symbiotic relationship of the AM fungi
with H. serratifoliu species.

Thus, the aims of this work are; (i) to study the influence of AM fungi on the accumu-
lation of osmolytes derived from nitrogen and carbohydrate metabolism in H. serratifolius
under different water regimes; (ii) to evaluate the influence of AM fungi on the absorption
of phosphorus and nitrogen compounds in H. serratifolius under different water regimes;
(iii) to evaluate the influence of AMF on the growth and development of H. serratifolius
under different water regimes. Therefore, we hypothesized that inoculation with AM fungi
will have a beneficial impact on the tolerance of H. serratifolius seedlings to water deficits
by promoting a greater accumulation of total free amino acids, proline, and some soluble
carbohydrates.

2. Results
2.1. Growth and Colonization

In general, the +AMF plants showed a greater increase in shoot dry mass than the
-AMF plants, around 18% in WW, 14% in MD, and 4% in SD. An interesting result was
observed in plants under +MD that showed an increase of 17% in shoot dry mass in relation
to plants under -WW (Table 1). The height of yellow ipê plants was more strongly influenced
by AMF in WW, where +AMF plants provided an increase of about 11%. Inoculation with
AMF and the different water regimes did not provide significant differences (p ≤ 0.05) in
leaf area and total leaf area (Table 1). The root volume was positively influenced by the
water regime, where plants under WW showed a volume increase of about 50% in relation
to plants under MD and SD. However, the presence of AMF did not significantly influence
the water regimes (Table 1). The under -AMF plants showed no colonization. Plants
inoculated with AMF showed Arum-type colonization; the percentage of colonization (%C)
was directly related to the water regime, where the highest %C was observed in plants
under +WW, and the lowest was observed in plants under +SD (Table 1). As observed
in the dry mass, the height of plants in +MD was also 12% higher than in -WW plants
(Table 1).
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Table 1. Growth and mycorrhizal colonization of H. serratifolius plants subjected to different water
regimes in the presence and absence of arbuscular mycorrhizal fungi.

Water
Regime Inoculation Shoot Dry Mass

(g)

Shoot
Height

(cm)

LA
(cm2)

TLA
(cm2)

RV
(cm2) %C

SD
-AMF 82.3 b 10.6 ab 5.41 a 37.7 a 0.27 c -
+AMF 86.7 ab 9.99 ab 5.23 a 38.0 a 0.37 bc 17.3 c

MD
-AMF 81.1 b 10.5 ab 5.50 a 40.0 a 0.32 bc -
+AMF 93.6 a 10.8 a 6.83 a 47.8 a 0.33 bc 29.8 b

WW
-AMF 79.9 b 9.53 b 5.36 a 38.9 a 0.53 a -
+AMF 94.9 a 10.7 a 6.88 a 44.7 a 0.44 ab 57.7 a

SD: severe water deficit; MD: moderate water deficit; WW: well-watered; -AMF: absence of AMF; +AMF: presence
of AMF; LA: leaf area; TLA: total leaf area; RV: root volume; %C: colonization percentage; - absence of mycorrhizal
colonization. The means of variables with the same letter are not statistically different by Tukey’s test ≤ 5%.

2.2. Nitrogen Metabolism

Plants in -SD and -MD showed accumulations of total proteins at about 48% and 26%,
higher than in +SD and +MD treatments, respectively. In WW, there was no statistical
difference (p ≤ 0.05) (Figure 1A). However, +AMF plants showed greater accumulation of
total amino acids compared to -AMF plants regardless of the water regime (Figure 1B). The
plants in +SD and +MD showed a higher accumulation than the plants in -SD and -MD,
about 20% and 40%, respectively, while in conditions of good hydration the +WW plants
showed an accumulation that was 15% higher than the -WW plants.
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Figure 1. Accumulation of total proteins (A) and total soluble amino acids (B) of H. serratifolius 
plants subjected to different water regimes in the presence and absence of arbuscular mycorrhizal 
fungi. -SD: severe water deficit without AMF; +SD: severe water deficit with AMF; -MD: moderate 
water deficit without AMF; +MD: moderate water deficit with AMF; -WW: well-watered without 
AMF; +WW: well-watered with AMF. The means of variables with the same letter are not statisti-
cally different by Tukey’s test ≤ 5%. 

The +AMF plants showed greater accumulation of proline in the shoots than the -
AMF plants, comparing them within the same water regime. The highest accumulation 
was observed in plants under +SD, which were about 54% higher than plants without 
AMF in the same water regime. However, H. serratifolius plants under +MD and +WW 
showed an approximate 60% increase of proline in the shoot compared to plants under -
MD and -WW (Figure 2A). The accumulation of proline in the root was mainly influenced 

Figure 1. Accumulation of total proteins (A) and total soluble amino acids (B) of H. serratifolius plants
subjected to different water regimes in the presence and absence of arbuscular mycorrhizal fungi. -SD:
severe water deficit without AMF; +SD: severe water deficit with AMF; -MD: moderate water deficit
without AMF; +MD: moderate water deficit with AMF; -WW: well-watered without AMF; +WW:
well-watered with AMF. The means of variables with the same letter are not statistically different by
Tukey’s test ≤ 5%.

The +AMF plants showed greater accumulation of proline in the shoots than the -AMF
plants, comparing them within the same water regime. The highest accumulation was
observed in plants under +SD, which were about 54% higher than plants without AMF in
the same water regime. However, H. serratifolius plants under +MD and +WW showed an
approximate 60% increase of proline in the shoot compared to plants under -MD and -WW
(Figure 2A). The accumulation of proline in the root was mainly influenced by the water
regime, where plants in the SD had the highest accumulations, about 80% higher than
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plants in the MD. However, in the ideal water regime, +WW plants showed 70% higher
accumulation than -WW plants (Figure 2B).
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Figure 3. Accumulation of ammonium (A) and nitrate (B) of H. serratifolius plants submitted to dif-
ferent water regimes in the presence and absence of arbuscular mycorrhizal fungi. -SD: severe water 
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Figure 2. Variation in shoot (A) and root (B) proline accumulation of H. serratifolius plants submitted
to different water regimes in the presence and absence of arbuscular mycorrhizal fungi. -SD: severe
water deficit without AMF; +SD: severe water deficit with AMF; -MD: moderate water deficit without
AMF; +MD: moderate water deficit with AMF; -WW: well-watered without AMF; +WW: well-
watered with AMF. The means of variables with the same letter are not statistically different by
Tukey’s test ≤ 5%.

Plants within the same water regime showed no statistical differences for the accumu-
lation of ammonium (p ≤ 0.05); only the -WW treatment provided an increase of about 45%
for the plants in the +MD and +WW treatments (Figure 3A). Regarding nitrate accumula-
tion, it was higher in plants under +WW (about 60% higher than in plants without AMF),
but there were no differences in the other treatments (Figure 3B).
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out AMF; +MD: moderate water deficit with AMF; -WW: well-watered without AMF; +WW: well-
watered with AMF. The means of variables with the same letter are not statistically different by 
Tukey’s test ≤ 5%. 
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Figure 3. Accumulation of ammonium (A) and nitrate (B) of H. serratifolius plants submitted to dif-
ferent water regimes in the presence and absence of arbuscular mycorrhizal fungi. -SD: severe water 
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Figure 3. Accumulation of ammonium (A) and nitrate (B) of H. serratifolius plants submitted to
different water regimes in the presence and absence of arbuscular mycorrhizal fungi. -SD: severe
water deficit without AMF; +SD: severe water deficit with AMF; -MD: moderate water deficit without
AMF; +MD: moderate water deficit with AMF; -WW: well-watered without AMF; +WW: well-
watered with AMF. The means of variables with the same letter are not statistically different by
Tukey’s test ≤ 5%.
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2.3. Phosphorus

Regarding phosphorus (P), well-hydrated plants in the presence of AM fungi had the
highest concentration of phosphorus in the root, while under water deficit conditions there
was no statistical difference (p ≤ 0.05) (Figure 4).
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Figure 4. Accumulation of phosphorus of H. serratifolius plants subjected to different water regimes
in the presence and absence of arbuscular mycorrhizal fungi. -SD: severe water deficit without AMF;
+SD: severe water deficit with AMF; -MD: moderate water deficit without AMF; +MD: moderate
water deficit with AMF; -WW: well-watered without AMF; +WW: well-watered with AMF. The
means of variables with the same letter are not statistically different by Tukey’s test ≤ 5%.

2.4. Carbohdrate Metabolism

It was observed that under the +MD regime, the plants of H. serratifolius showed a
higher accumulation of total soluble sugar at around 45% compared to the plants under
the –MD regime. In the WW and SD regime, the +AMF plants also showed slightly
higher accumulation than -AMF plants (Figure 5A). Plants submitted to +WW showed a
64% higher accumulation of non-reducing sugar than plants in -WW (Figure 5B). In SD,
-AMF plants showed an increase of 29% in relation to +AMF plants. In MD, AMF had no
significant effect (p ≤ 0.05). Plants in SD, regardless of the presence of AMF, showed the
highest values of reducing sugar accumulation, followed by plants in -MD, which showed
accumulation 18% higher than +AMF plants in the same water regime. In WW, the presence
of AMF did not have a significant effect (p ≤ 0.05) (Figure 5C).
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3. Discussion

The presence of AM fungi encouraged the accumulation of osmolytes derived from
nitrogen and carbohydrate metabolism, providing greater growth and absorption of phos-
phorus and nitrogen compounds in H. serratifolius plants under different water regimes.
With regard to growth, Zou et al. [24] and Zhang et al. [25] observed an increase in shoot
dry mass and stem growth in seedlings of Poncirus trifoliata and Zenia insignis, respectively,
when in the presence of AMF, both in ideal water conditions and in a water deficit.

The influence of AMF on leaf development is variable; Zhang et al. [26] observed
that, in Cyclobalanopsis glauca, in the presence of AMF, there was an increase in leaf area
only under water deficit conditions, while Zou et al. [24] observed in Poncirus trifoliata
there were benefits of AMF on the number of leaves in well-hydrated plants and under a
water deficit.

However, Vieira et al. [27] did not observe any influence of water deficit on leaf
development in H. serratifolius. In our study, the total leaf area and the number of leaves
were not influenced by the water deficit due to the short period of time of exposure to stress.
Plants subjected to water stress have different responses that include increased root/shoot
ratio, reduced growth, altered leaf anatomy, and reduced leaf size, as well as a reduced
total leaf area to limit water loss and ensure photosynthesis [28].

Regarding root volume, Zou et al. [24] reported an increase in root volume when
comparing P. trifoliata seedlings infected with AM fungi to seedlings without AM fungi,
both in ideal water regimes and water deficits, in order to verify that the root volume
was higher in conditions of ideal hydration than in water deficit. This scenario was also
observed by Huang et al. [29] in Malus prunifolia (Willd.) Borkh. and corroborated in
this study.

One of the benefits of AMF is the colonization of plant roots, increasing the area
explored by the root. Urgiles et al. [30] reported that colonization of tree roots from
forest species can reach 70%. For the genus Handroanthus, the %C ranged from 13%
to 47% [31]. Frosi et al. [32] observed in Poincianella pyramidalis under different water
regimes a %C ranging from 31.8% to 29.9%, with no statistical differences, whereas in
our study, %C in H. serratifolious ranged from 17.3% to 57.7%, with the highest %C in
+WW condition. A decrease in %C by AMF due to the increase in water deficit was also
reported by Zhang et al. [25] and Begum et al. [33] in seedlings of Zenia insignis and Zea
mays, respectively. The decrease can be attributed to the lower availability of moisture in
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the soil, impairing both the development of AMF and vegetables [33]; in the present work,
a decrease in root volume was observed as well as an increase in water limitation, even
more accentuated in plants in the –SD condition.

The benefits to plant growth are related to several physiological, biochemical, and nu-
tritional factors, such as an increase in net photosynthetic rate, greater PSII efficiency, greater
accumulation of osmolytes such as proline, soluble sugars, and total amino acids [34]. It is
also possible to observe a greater absorption of P and nitrogen compounds through greater
activity of some enzymes [33]. In some cases, it may be due to morphological changes with
increasing root volume and dry mass [35]. Zou et al. [24] and Zhang et al. [25] observed
in seedlings of Poncirus trifoliata (L.) Raf. and Zenia insignis Chun, respectively, increases
in shoot dry mass and stem growth when cultivated in the presence of AM fungi, both in
ideal water regimes and in water deficits.

The total protein results of the present study were similar to those observed by
Oliveira et al. [36] and Baslam et al. [37], in which they did not find a significant in-
crease in total protein content in seedlings of Myracrodruon urundeuva M. Allemão and
Lactuca sativa L., respectively, which were inoculated with AM fungi under ideal hydration
conditions. However, the highest accumulations of total proteins were observed in plants
under water stress, justified by the increase in the production of enzymes of the antioxidant
system to combat reactive oxygen species.

The maximum possible content of soluble proteins in plants not inoculated with AM
fungi under water stress is also related to the content of total amino acids, as the plants
with the lowest protein values were those that presented the highest values of amino acids.
The opposite was also observed, in which the plants with the highest protein values had
the lowest amino acid values. The increase in total free amino acid content is a strategy
plants use to tolerate water stress, as the accumulation reduces the osmotic potential
by increasing concentrations and, thus, increasing cellular water retention during water
stress [17]. The main amino acids related to osmotic control are proline, mannitol, trehalose
(Thre), D-inositol, sorbitol, betaine β-alanine, polyamines (Pas), and dimethyl sulfonium
propionate [38].

The accumulation of proline in plants under water deficit is known, but the presence
of AM fungi changes its dynamics. Higher levels of proline were observed in seedlings
of Macadamia tetraphylla L.A.S.Johnson [39], Ephedra foliata Boiss. ex C.A.Mey. [40] and
in the present study in H. serratifolius, but a decrease in proline content was observed in
P. trifoliata [1,24]. Proline biosynthesis has been associated with the glutamate or ornithine
pathways [41], which are both amino acids that that were significantly increased in plants
with AM fungi.

Proline acts as an osmotolerant agent, in addition to being an energy source [42] and
generates, during its catabolism, the energy equivalent to about 30 ATP molecules [43]
and nitrogen molecules [40,44], which is a fundamental process for stress recovery. An-
other important role of proline is in maintaining tissue water content under water deficit
conditions [41], protecting plant proteins and membranes from damage caused by excess
reactive oxygen species [45]. Thus, the accumulation of proline in H. serratifolius plants is of
fundamental importance both to tolerate water deficits, and to aid in recovery after stress,
providing greater gain in dry mass, as observed in our study.

For most higher plants, ammonium (NH4
+) and nitrate (NO3

−) are the two main
ways to absorb inorganic N from the soil [46]. They are compounds that can play different
roles when plants are under water deficit [29,33]. The greater accumulation of nitrate is
related to the greater activity of nitrate reductase and nitrite reductase in AMF plants [47].
During the assimilation process, NO3

− is converted into NH4
+ by nitrate reductase (NR)

and nitrite reductase (NiR). Subsequently, NH4
+ is assimilated to glutamine and glutamate

via glutamine synthetase (GS) and glutamate synthase (GOGAT) [48,49]. NR catalyzes
the rate-limiting step of nitrogen assimilation, and increased activity has been reported to
directly influence the synthesis of key stress-protective amino acids such as proline, thus
leading to the regulation of important physiological processes under stress [50].
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The results in P were similar to those observed by Pavithra and Yapa [51]. In general,
the presence of AM fungi promotes greater absorption of this nutrient, which is widely
documented in the literature with several plant species such as Z. insignis [24], C. glauca [26],
Ipomoea batatas (L.) Lam. [52]. and Hevea brasiliensis (Willd. ex A.Juss.) Mull.Arg [53].
However, it is worth mentioning that in all these works, the evaluation of phosphorus
content was carried out in the leaves, while in the present work it was carried out in the
root. In this study, under conditions of good hydration, the phosphorus content in the roots
of mycorrhizal +AMF plants was about 200% higher than in -AMF plants.

Thus, with the imposition of the water deficit and, consequently, the decrease in soil
moisture, there was a decrease in the absorption of P by the roots, even in plants with
mycorrhiza, since this nutrient is immobile in the soil and limits the normal growth of
plants [42]. Often the higher phosphorus uptake in plants with AM fungi is related to a
greater surface area for uptake provided by fungal hyphae [54], and to the induction of
the formation of genes and plant phosphate transport proteins, expressed in the hyphae
outside the root [55–57], in addition to the increase in alkaline and acid phosphatase enzyme
activity [40].

Several studies have shown greater accumulation of soluble sugar in plants with
mycorrhiza under stress conditions, mainly moderate stress [25,58–60]. Studies such as
Zarik et al. [61] with Cupressus atlantica Gaussen also observed the highest accumulation of
soluble sugar in a condition of 25% FC, as was the case in our work.

Carbohydrate accumulations change according to developmental stage, environmental
factors, and species. Yooyongwech et al. [52] did not observe an increase in reducing and
non-reducing sugars in the leaves of I. batatas in the presence of AM fungi compared to
plants without AM fungi. Tisarum et al. [53], in H. brasiliensis, observed results similar
to those found in this study, since under conditions of good hydration, they observed an
increase in non-reducing sugar in plants with AM fungi, while under stress conditions,
plants without AM fungi showed higher sucrose content.

Carbohydrates participate in energy metabolism by regulating plant growth and
development, acting as important molecules in the regulation of stress responses and
tolerance mechanisms, mainly in the form of osmolytes [34,62]. Water deficit conditions
almost always result in changes in the levels of reducing sugars, such as glucose, fructans,
and non-reducing sugars such as sucrose and raffinose [63]. Additionally, water deficit
conditions can increase the enzymatic activity of sucrose phosphate synthase, neutral
invertase, and the net activity of sucrose-metabolized enzymes in leaves, and decrease
enzymatic activity of acid invertase and sucrose synthase in leaves [1].

Sucrose is the main sugar translocated via phloem, from the source, mainly leaves, to
the drain; in plants with AM fungi, the root becomes a strong drain. In the root, sucrose is
converted to glucose and fructose, where glucose can then be routed to the AM fungi and
both molecules can function as osmolytes [34]. Sucrose acted more strongly as a source of
energy for the growth of plants with AM fungi under conditions of good hydration. Free
proline and soluble carbohydrates are the main osmolytes that act against water stress in
higher plants, such as Olea europaea L. [64], P. trifoliata [65], and M. tetraphylla [38].

Water deficit induces several physiological, biochemical, and molecular changes in
plants that lead to increased plant tolerance [28]. Normally, it increases the root-shoot ratio
and reduces water consumption by reducing leaf area [66]. However, in the present study,
biochemical changes were mainly ones observed to increase tolerance of water deficits,
such as increased accumulation of proline, total amino acids, sugars, and nitrate, and not
ones that strongly influence morphological changes in H. serratifolius plants.

These biochemical changes contribute to reducing the osmotic potential and, therefore,
the leaf water potential in plants exposed to drought [35]. The lower value of the water
potential allows the plant, with mycorrhiza, to sustain the high level of hydration and
turgor of the organs, which maintain the general physiological activities of the cells and is
especially linked to the photosynthetic apparatus [67].
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4. Materials and Methods
4.1. Location and Experiment Design

The AM fungi used in this study were obtained from the rhizospheric soil of an area of
savanna located in the region of Alter do Chão, in Santarém city, west of Pará state, Brazil
(2◦28′1′′ S and 54◦49′41′′ W). The soil in the area is predominantly composed of oxisol,
which is well-drained, acidic, deficient in phosphorus and has low natural fertility, with
intense weathering and high iron and aluminum oxide content [68]. The infective inoculum
was produced from rhizospheric soil samples as described by Santos et al. [69].

The soil used as substrate was disinfected in an autoclave as recommended by San-
tos et al. [70] and evaluated for its chemical and granulometric properties [71] (Table 2).

Table 2. Chemical properties of soil used as substrate.

pH Al Ca Mg H + Al H P K Fe Mg MO CO Areia Argila Silte

cmolc/dm3 mg/dm3 dag/dm3 %

5 2.42 1.03 0.53 5.3 2.9 22 102 65.1 6.3 5.47 3.18 42.9 41.5 15.6

pH: hydrogen potential; Al: aluminum; Ca: calcium; Mg: magnesium; H + Al: calcium acetate; H: hydrogen; P:
phosphorus; K: potassium; Fe: iron; Mg: magnesium; MO: organic matter; CO: organic carbon.

The experiment was carried out according to a bifactorial organization in a completely
randomized design. The first factor, which represented the inoculation status of plants,
had two levels: (1) + AM = inoculated; and (2) -AM = non-inoculated. The second factor
was the water regime with three levels, according to Mo et al. [60], with changes defined
from previous studies: (1) 10% field capacity (FC) simulating severe water deficit (SW);
(2) 25% (FC) simulating moderate water deficit (MD); and (3) 62% (FC) simulating a well-
watered (WW) condition. The combination of the gradients of the two factors resulted
in 6 experimental variants (2 × 3). The experiment was carried out in eight replicates,
resulting in 48 pots (6 variants × 8 replicates).

The cultivation was carried out at the Laboratory of Plant Physiology and Plant
Growth, at the Federal University of Western Pará. The seeds of H. serratifolius were
sown in pots with a capacity of 0.7 L, in a controlled environment with daily irrigation to
maintain the initial field capacity of 62%. Each repetition of the group of mycorrhizal plants
received 25 g of infective inoculum, which had a density of 30.89 spores per gram, with the
Glomeraceae family being the most frequent. 30 days after sowing, the implementation of
the water deficit began; irrigation was reduced until reaching a field capacity of 10% and
25%. After 60 days of sowing, all seedlings were submitted to different water regimes of
10% (SD), 25% (MD), and 62% (WW), a situation that remained until the 90th day.

4.2. Observations and Analysis

The growth analysis of H. serratifolius seedlings took place on the 90th day, where
shoot height and root volume were quantified as described by Santos et al. [69]. The leaf
area (LAI) was obtained by the formula LA = L ×W × F, where, (L) is the leaf length and
(W) leaf width and (F) is the correction factor for the leaves of H. serratifolius (0.6206). The
correction factor “F” was determined by simple regression analysis between the area of a
sample of leaves and the product of its dimensions. In this case, the line fitted to the data
set had an equation of the type Y = bx, where “b” corresponds to the factor “F” (Figure 6).
The actual leaf area sampled was determined by digitizing the respective images and later
calculating the area with ImageJ software [72]. The factor was then tested and validated
using regression analysis, examining the relationship between the estimated leaf area and
the real leaf area in a new leaf sample.
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Statistical analyses were performed using the SISVAR program version 5.8.92 [84], 
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(p > 0.05) and the means were compared by the Tukey test at the 5% level of significance. 
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soluble sugars and total soluble amino acids, while in severe water deficits, it is controlled 
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A fresh root sample of approximately 1 g of each treatment was taken to evaluate
colonization by AM fungi, and the quantification of the percentage of colonization was
performed according to Phillips and Hayman, [73] and Giovannetti and Mosse [74]. Af-
terwards, the plants were placed in an oven with forced air circulation at a temperature
of 60 ◦C until at a constant weight. Later, the samples of shoot and root dry mass were
weighed separately on an analytical balance with a precision of 0.01 g, and samples were
then packed for further analysis.

A part of the dehydrated samples was taken to quantify the contents of total soluble
sugars by the Antrona method [75], reducing sugars by the DNS method [76], and the
non-reducing sugars [77], total proteins [78], total soluble amino acids [79] and proline [80].
The values of free ammonium [81], free nitrate [82], and phosphorus content were mea-
sured from the extraction by Mehlich-1 after digestion in a muffle furnace at 500 ◦C, and
the determination was carried out by an acidic ammonium molybdate solution [83]. To
calculate the accumulation, the dry mass was multiplied by the content.

Statistical analyses were performed using the SISVAR program version 5.8.92 [84],
where the variables were subjected to normality verification by the Shapiro-Wilk test
(p > 0.05) and the means were compared by the Tukey test at the 5% level of significance.

5. Conclusions

Due to our study and the current literature, we propose that osmoregulation in
H. serratifolius plants with AM fungi in moderate water deficits is performed primarily by
soluble sugars and total soluble amino acids, while in severe water deficits, it is controlled
by proline and reducing sugars. AM fungi promoted greater absorption of phosphorus and
nitrate only under a well-watered regime. Furthermore, AM fungi provided an increase
in dry mass in both water deficit and well-watered regimes, but plant height was more
strongly affected by AM fungi only under the well-watered regime. Our findings showed
that the mycorrhizal colonization was directly related to the water regime, where well-
watered plants had a higher percentage of colonization, and plants with severe water
deficits decreased the colonization percentage.
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