

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ INSTITUTO DE ENGENHARIA E GEOCIÊNCIAS PROGRAMA DE CIÊNCIA E TECNOLOGIA

ELLEN MAYARA PORTO DE ALMEIDA JANNA KARINNA ALMEIDA DA SILVA

MODELAGEM E SIMULAÇÃO DE SISTEMAS TÉRMICOS

SANTARÉM - PA 2017

ELLEN MAYARA PORTO DE ALMEIDA JANNA KARINNA ALMEIDA DA SILVA

MODELAGEM E SIMULAÇÃO DE SISTEMAS TÉRMICOS

Trabalho de Conclusão de Curso, apresentado ao Colegiado do Programa Ciência e Tecnologia da Universidade Federal do Oeste do Pará – Campus de Santarém, para obtenção do grau de Bacharel Interdisciplinar em Ciência e Tecnologia.

Orientador: Prof. Dr. Carlos Célio Sousa da Cruz.

SANTARÉM - PA 2017

AGRADECIMENTOS

A nossa família e amigos pela compreensão e apoio demonstrados ao logo da realização deste trabalho.

Ao nosso orientador pelo tempo dedicado e pelas contribuições realizadas.

Agradecemos ainda os demais professores e colaboradores do Programa de Ciência e Tecnologia pelo empenho e esforços oferecidos durante todo o curso.

"Faça as coisas o mais simples que você puder, porém não as mais simples."

(Albert Einstein)

SUMÁRIO

1 INTRODUÇÃO	1
2 OBJETIVOS	3
2.1 OBJETIVO GERAL	3
2.2 OBJETIVOS ESPECÍFICOS	3
3 REFERENCIAL TEÓRICO	4
3.1 UTILIZAÇÃO DE SOFTWARES NA TERMODINÂMICA	4
3.1.1 Software EES	4
3.1.2 Software CATT	7
3.2 SISTEMAS TÉRMICOS	9
3.2.1 Ciclo de Rankine	9
3.2.2 Ciclo de Rankine Regenerativo	. 10
3.2.3 Ciclo de Refrigeração por Absorção	13
3.2.4 Sistemas Térmicos e Geração de Energia	. 17
4 METODOLOGIA	. 19
4.1 MODELAGEM DOS SISTEMAS TÉRMICOS	19
4.1.1 Balanço de massa e energia do sistema	. 19
4.1.2 Ciclo De Rankine	21
4.1.3 Sistema de Refrigeração por Absorção	28
4.2 SIMULAÇÃO DOS SISTEMAS TÉRMICOS	32
4.2.1 Ciclo de Rankine Regenerativo com múltiplos aquecedores	.32
4.2.2 Ciclo de Refrigeração por Absorção	35
5 RESULTADOS E DISCUSSÕES	38
6 CONCLUSÃO	41
REFERÊNCIAS	.43

RESUMO

A utilização de ferramentas computacionais nas disciplinas de engenharia tem ganhado destaque, haja vista a complexidade da aprendizagem discente em disciplinas que envolvem amplo conhecimento matemático, projetos de sistemas e equipamentos de diversas dimensões. Na termodinâmica, por exemplo, os sistemas térmicos que envolvem geração de energia e refrigeração, devem ser cuidadosamente analisados para que haja o equilíbrio entre as teorias e experimentações práticas, contribuindo para o entendimento da disciplina. Dessa forma buscou-se apresentar o uso dos softwares Engineering Equation Solver (EES) e Computer Aided Thermodynamics Tables (CATT) na análise e simulação dos ciclos de Rankine e de refrigeração por absorção, identificando a contribuição que essas ferramentas possam exercer na compreensão de problemas de sistemas térmicos de forma a abranger ainda a configuração ideal desses sistemas. O objetivo é, portanto, discutir estratégias de ensino-aprendizagem que auxiliem no entendimento dos sistemas e dissemine conhecimento através de práticas mais econômicas e eficientes como a simulação através de usos de softwares acadêmicos.

Palavras chaves: softwares acadêmicos, EES, sistemas térmicos, ciclo de Rankine, refrigeração por absorção.

LISTA DE FIGURAS

Figura 1 - Comandos da barra de ferramentas do EES	6
Figura 2 - Tela inicial do software CATT	8
Figura 3 - Ciclo de Rankine simples e seu diagrama T-s	9
Figura 4 – Ciclo de Rankine regenerativo com AAA aberto e seu diagrama T-s 1	1
Figura 5 – Ciclo de Rankine regenerativo com AAA fechado e seu diagrama T-s 1	2
Figura 6 - Ciclo de Rankine Regenerativo com múltiplos aquecedores	21
Figura 7 - Esquema de um sistema simples de Refrigeração por Absorção2	29
Figura 8 - "Equation Window" contendo o código para o ciclo com múltiplos aquecedores. 3	33
Figura 9 - "Solution Window" para o ciclo regenerativo com múltiplos aquecedores	34
Figura 10 - "Arrays Table" para o caso do ciclo regenerativo com múltiplos aquecedores 3	34
Figura 11 - Diagrama para o caso do ciclo com múltiplos aquecedores	35
Figura 12 - Funções do Menu "Examples" do EES 3	36
Figura 13 - Modelo do Sistema de Refrigeração Por Absorção do EES 3	36
Figura 14 - Resultado da Simulação do Modelo de Refrigeração Por Absorção	37

LISTA DE ABREVIATURAS E SIGLAS

AAA	- Aquecedor de Água de Alimentação
CATT	- Computer Aided Thermodynamics Tables
COP	- Coeficiente de Performance
EES	- Engineering Equation Solver
SI	- Sistema Internacional de Unidades
SPV	- Sistema de Potência a Vapor
SRA	- Sistema de Refrigeração por Absorção
TTPS	- Thermal Power Plant Software

LISTA DE SÍMBOLOS

Т	-	Temperatura [°C]
S	-	Entropia [kJ/kg.k]
Ŵ	-	Fluxo de trabalho por unidade de massa [kJ/kg]
ġ	-	Fluxo de calor por unidade de massa [kJ/kg]
COP	-	Coeficiente de Performance
Q	-	Fluxo de Calor [kJ]
W	-	Fluxo de Trabalho [kW]
'n	-	Fluxo de Massa [kg/s]
Е	-	Energia
Н	-	Entalpia [kJ/kg]
V	-	Velocidade [m/s]
G	-	Aceleração da Gravidade [m/s ²]
Ζ	-	Energia Potencial [kJ/kg]
Mpa	-	Mega pascal
Р	-	Pressão [Mpa]
y'	-	Fração de vapor extraída de primeiro estágio
y"	-	Fração de vapor extraída de segundo estágio
Х	-	Título
U	-	Energia Interna
V	-	Volume Específico

SÍMBOLOS GREGOS

η	-	Eficiência
Δ	-	Variação

SUBSCRITO

Т	-	Turbina
Ent	-	Entrada
Sai	-	Saída
В	-	Bomba
Liq	-	Liquido
B1	-	Bomba 1
B2	-	Bomba 2
Evap	-	Evaporador
Ge	-	Gerador
Vc	-	Volume de controle
Cond	-	Condensador
Abs	-	Absorvedor
High		Alta
Low		Baixa

1 INTRODUÇÃO

O uso de softwares computacionais em disciplinas de engenharia sempre teve grande destaque na formação discente, principalmente em projetos que envolvam modelagem matemática, uma vez que proporciona a viabilidade de identificação da melhor maneira de obter um resultado coerente de acordo com o que se quer abordar. Dentre as principais contribuições dessas ferramentas destacam-se: abordagem facilitada de conceitos científicos; pré – determinação de fórmulas matemáticas usuais; facilidade no dimensionamento de projetos com simulações computacionais e redução de gastos com utilização de protótipos.

Um exemplo de software aplicável em disciplinas da engenharia é o Engineering Equation Solver (EES). Desenvolvido pela empresa F-Chart, o software apresenta uma linguagem simplificada e intuitiva na resolução de problemas de menor complexidade e pode ser utilizado em disciplinas que envolvam conceitos de termodinâmica, mecânica dos fluidos e transferência de calor. A simulação no EES possibilita ao usuário uma avaliação coerente para a obtenção de um resultado, permitindo uma visualização ampla sobre características de operação dos equipamentos, rendimento e eventual melhoramento dos sistemas simulados.

Outra ferramenta de potencial aplicabilidade na termodinâmica é o Computer Aided Thermodynamics Tables (CATT), utilizado em análises de sistemas que envolvem propriedades tabeladas. Este software auxilia a consulta destas de forma ágil e precisa utilizando duas propriedades conhecidas para determinação de outras sem a necessidade de interpolação em tabelas.

Embora os trabalhos sobre sistemas térmicos sejam correlacionados a otimização destes, a prática de simulação apresenta-se como alternativa interessante para estimular a análise e o melhoramento da eficiência dos ciclos termodinâmicos estudados, dentre os quais temos: o ciclo de Rankine e ciclo de refrigeração por absorção.

O ciclo de Rankine regenerativo múltiplo será abordado analiticamente com auxilio do CATT com o intuito de comparar os resultados com a simulação realizada no EES. O ciclo de absorção será usado para abordar outras funcionalidades do software EES, possibilitando um entendimento mais completo sobre a estrutura dos sistemas e o fluxo das substâncias binárias. Desse modo, é fundamental a disseminação de softwares capazes de auxiliar discentes e professores nas atividades acadêmicas, contribuindo no processo de aprendizagem, na produção científica e alinhando teoria e prática simulada ao aprendizado do aluno. Nesse contexto, destacam-se outras ferramentas utilizáveis na área de ciências exatas: o EXCEL, o AUTOCAD, FORTRAN e o MATLAB.

Assim, optou-se abordar a modelagem de sistemas térmicos utilizando os softwares EES e CATT, por apresentarem linguagem computacional de fácil manipulação e agilidade na resolução dos códigos utilizando as propriedades das substâncias aplicáveis na termodinâmica de forma a demonstrar o uso destas ferramentas no âmbito acadêmico.

2 OBJETIVOS

2.1 OBJETIVO GERAL

Simular problemas de sistemas térmicos utilizando softwares acadêmicos.

2.2 OBJETIVOS ESPECÍFICOS

- Modelar ciclos de potência a vapor e de refrigeração;
- Simular sistemas térmicos através do software EES;

• Incentivar a aplicação das ferramentas utilizadas na produção científica, demonstrando a aplicabilidade do software EES e CATT;

3 REFERENCIAL TEÓRICO

3.1 UTILIZAÇÃO DE SOFTWARES NA TERMODINÂMICA

3.1.1 Software EES

O software Engineering Equation Solver é muito útil na resolução de problemas que envolvem sistemas térmicos. Desenvolvido para as versões do Windows e utilizado no sistema Linux com o auxílio de emuladores, o programa permite que o aluno avalie de forma mais adequada e econômica o comportamento de problemas e suas variáveis, contribuindo no aprendizado de conceitos importantes na engenharia. Para isso o EES apresenta vários exemplos em sua rotina computacional que podem ser utilizados e modificados pelo usuário. Para Ceranto et al.(2012) uma das facilidades do EES é que este não requer linguagem especial de programação, permitindo uma simplificada manipulação de suas funcionalidades pelo usuário.

O programa foi desenvolvido pela F-Chart Software, com a finalidade de resolver equações algébricas, diferenciais e com variáveis complexas. De modo simplificado, Pereira (2013) cita as principais funcionalidades do EES, têm –se, portanto: otimizações, análise de regressões lineares e não lineares, plotagem de gráficos, simplificação de análise de incertezas e animações.

O autor ainda apresenta duas principais diferenças entre o EES e os demais programas de resolução de equações numéricas: O EES opera sempre com eficiência, pois identifica e agrupa automaticamente as equações que são resolvidas simultaneamente, simplificando o processo para o usuário; o programa apresenta uma biblioteca com diversas funções matemáticas e propriedades termofísicas que abrange várias substâncias, permitindo um amplo e facilitado acesso a informações usuais em problemas de engenharia. E caso necessário o programa ainda permite que o usuário adicione relações funcionais.

O uso do software em sistemas térmicos mostra-se de grande utilidade, pois diminui a necessidade de consultas em tabelas termodinâmicas e domínio de técnicas de solução de equações. Pereira (2013) entende que o tempo utilizado para essas consultas poderia ser empregado a compreensão dos problemas em si.

3.1.1.1Características e Funcionalidades do software EES

Por padrão o programa está configurado no Sistema Internacional (SI) de unidades, e apresenta temperatura em Celsius (°C), energia em kJ, propriedades específica em base mássica, pressão em kPa e funções trigonométricas em graus. Contudo, estas unidades podem ser modificadas de três formas: Ao executar o programa o usuário acessa uma caixa de diálogo que mostra as informações relativas o registro e versão do programa, nessa caixa têm-se a opção "Preferences" onde podem ser alteradas as unidades conforme a necessidade do usuário. O sistema de unidades também pode ser alterado clicando em "Options" e depois em "Unit System" ou clicando nas unidades mostradas na barra de status da janela de equações. Escolhidas as unidade, para torná-las como "padrão" deve-se clicar em "Store" e sobrescrever o arquivo ees.prf.

3.1.1.2 Menus

O programa apresenta a janela de equações ou "Equations Windows" como interface inicial, onde será expresso o código computacional. Na parte inferior da janela de equações é possível visualizar a barra de status que disponibiliza informações sobre o corpo da rotina computacional. A barra de menus apresenta os seguintes comandos:

- File: carregar, mesclar, salvar e imprimir.
- Edit: copiar, cortar e colar.
- Search: pesquisa e substituição.
- Options: sistema de unidades; informações; preferências entre outros.
- Calculate: formatação e resolução de equações.
- Tables: definição e alteração de tabelas de pesquisa e paramétricas.
- Plot: criação ou edição de gráficos.
- Windows: alternar e organizar as janelas.
- Help: acesso ao manual do programa ou ajuda.

Abaixo da barra de menus temos a barra de ferramentas que disponibiliza ao usuário os principais e recentes comandos utilizados, permitindo o acesso a eles com maior facilidade.

Pereira (2013) apresenta uma relação dos principais comandos da barra de ferramentas com seus respectivos atalhos e ícones.

Ícone	Nome (Atalho)	Descrição		
2 P	Variable Info (F9)	Mostra as variáveis que aparecem na sintaxe da rotina computacional, e permite atribuir ou alterar suas unidades.		
H	Function Info (Ctrl+Alt+F)	Permite adicionar funções matemáticas e termofísicas.		
81	Unit System (Ctrl+Alt+U)	Permite alterar o sistema de unidades padrão.		
<	Check Equations (Ctrl+K)	Permite verificar se o número de equações e de incógnitas é igual, e também verificar se há erros na sintaxe.		
	Solve (F2)	Resolve as equações.		
	Solve Table (F3)	Resolve as equações paramétricas.		
In New Parametric Table Perr		Permite criar tabelas paramétricas para realizar estudos de sensibilidade.		
X	New Plot Window Permite obter um gráfico relacionando duas var quaisquer de uma tabela paramétrica.			
8	Overlay Plot	Permite adicionar curvas a um gráfico já obtido.		
Property Plot		Permite obter gráficos de propriedades termodinâmicas das substâncias que constam na biblioteca do EES.		
Equations Window Janela principal do programa, pois é onde deve ser (Ctrl+E) sintaxe da rotina computacional.		Janela principal do programa, pois é onde deve ser escrita a sintaxe da rotina computacional.		
A N	Formatted Equations (F10)	Janela que mostra a sintaxe da rotina computacional na forma de notação matemática, ideal para impressão.		
	Solution Window (Ctrl+U) Janela que mostra os valores de todas as variáveis ol depois da resolução do conjunto de equações.			
Ш.	Parametric Table (Ctrl+n°)	Mostra as tabelas paramétricas já criadas.		
X	Plot Window (Ctrl+Alt+n°)	Mostra os gráficos já criados.		
2	Diagram Window (Ctrl+D)	Permite desenvolver uma interface gráfica para o problema que a sintaxe da rotina computacional resolve.		

Figura 1 - Comandos da barra de ferramentas do EES.

Fonte: Pereira (2013)

3.1.1.3 Funções

Para inserir função é necessário ir ao menu "Options", comando "Function Info", ou utilizar o atalho Ctrl+Alt+F. As classes de funções disponíveis são: Funções Matemáticas ("Mathand String Functions"); Propriedades Termofísicas ("Thermophysical Properties");

Transferência de Calor ("Heat Transfer"); Projeto Mecânico ("Mechanical Design"); Rotinas da Biblioteca do EES ("EES Library Routines"); Rotinas Externas ("External Routines"); Constantes ("Constants");

Na análise de sistemas térmicos o EES pode ser utilizado na obtenção parâmetros a ser utilizados em projetos de geração de energia, análise termodinâmica, eficiência de sistemas de refrigeração entre outros. Alguns autores já discorreram sobre a aplicação do programa e tiveram resultados satisfatórios.

Costenaro (2011) utilizou o EES para obtenção dos parâmetros de desempenho de uma instalação de geração de potência elétrica por ciclo de vapor. Ceranto et al. (2012) modelou um sistema de potência a vapor de forma a exemplificar a facilidade de uso do EES, citando na conclusão do trabalho as características do software: facilidade de programação; velocidade de programação e obtenção dos resultados; baixo custo de aquisição; baixa capacidade computacional requerida. Maziero (2012) desenvolveu um programa denominado TTPS (abreviação de Thermal Power Plant Software) e utilizou o EES e outros programas computacionais comparando os resultados da simulação de plantas térmica e de potência com os resultados do programa desenvolvido. Souza et al. (2014) apresentou o software para cálculo do Coeficiente de Performance de um sistema de refrigeração em cascata. Silva et al.(2014) apresentou um artigo sobre o uso do EES na modelagem termodinâmica de um sistema de geração de energia elétrica através de um ciclo de vapor utilizando as instalações do Hospital Universitário da UFPI – HU para constatar a viabilidade econômica na geração de energia elétrica. Sousa et al.(2015) apresentou uma metodologia para a analise da geração de efluentes industriais utilizando o EES na monitoração de parâmetros e vazões, criando um banco de dados com indicadores dos possíveis poluidores.

3.1.2 Software CATT

O software Computer Aided Thermodynamic Tables (CATT) é um programa executável de fácil manipulação contendo as propriedades termodinâmicas de diversas substâncias, usualmente encontradas em livros. Com o auxilio deste software torna-se possível consultar tais propriedades sem a necessidade de interpolação de valores contidos em tabelas.

A Figura 2 indica a interface do software. A tela inicial possui uma seção superior e inferior, separadas por uma barra ajustável, que permite maior ou menor visualização de cada seção. A seção superior indica os valores observados no último acesso e uma representação gráfica destes enquanto a seção inferior destaca todos os valores analisados anteriormente similarmente a uma planilha.

Fonte: CATT (2017)

O software contém quatro conjuntos de unidades pré-definidos para temperatura, pressão, volume especifico, energia interna e entropia. Para selecionar as unidades desejadas pode-se utilizar o ícone "Units" na tela inicial ou através da opção "Change Units" no menu "Options".

As propriedades são organizadas em sete grupos: "Water", "Refrigerants", "Cryogenics", "Air", "Ideal Gases", "Compressibility" e "Psychrometrics". Para acessar um grupo pode-se selecioná-lo na parte inferior da tela ou clicando no menu "Tables/Substances".

O CATT apresenta modos de cálculo de propriedades gerais e propriedades de saturação para os grupos "Water", "Refrigerants" e "Cryogenics". No primeiro modo, devemse inserir duas propriedades para a determinação das outras e estes valores encontrados podem estar em qualquer região termodinâmica. No modo de propriedades de saturação inicialmente acrescenta-se uma pressão ou uma temperatura e em seguida uma mistura a partir do titulo, entalpia, entropia ou volume especifico para os demais valores serem calculados. Os dados obtidos referem-se apenas à região saturada da substância. Após escolher um modo de cálculo, utiliza-se o ícone "Calculate" na tela inicial para a realização dos cálculos requeridos.

3.2 SISTEMAS TÉRMICOS

Os sistemas térmicos tornaram-se atrativos devido às possibilidades de utilização de fontes alternativas de energia, abrangendo desta forma o uso consciente da demanda por energia e refrigeração. Diante disso, buscou-se abordar o ciclo de rankine e o ciclo de refrigeração por absorção, tecnologias antigas mais de grande aplicabilidade no cenário energético atual.

3.2.1 Ciclo de Rankine

O ciclo ideal de Rankine é constituído basicamente por uma turbina, um condensador, uma caldeira e uma bomba e seu fluido de trabalho geralmente é a água. O ciclo ideal não possui irreversibilidade interna e transferência de calor para vizinhança. A Figura 3 mostra um ciclo de Rankine simples e seu respectivo diagrama T-s.

Figura 3 - Ciclo de Rankine simples e seu diagrama T-s.

Fonte: Adaptado de Shapiro (2013).

No estado 1, líquido saturado entra na bomba, onde é comprimido isentropicamente para aumentar a pressão. A água em forma de líquido comprimido no estado 2 segue para a caldeira, aquecida isobaricamente até a saturação, evaporando-se. Vapor superaquecido deixa a caldeira no estado 3 e entra na turbina, expandindo-se de maneira isentrópica, produzindo trabalho. Ao sair da turbina, a água usualmente está em uma mistura bifásica no estado 4, a qual é condensada à pressão constante no condensador, finalizando o ciclo.

Os princípios de conservação de massa e de conservação de energia são aplicados a cada componente do ciclo para a determinação das expressões de calor e trabalho do sistema. A eficiência térmica do ciclo é dada pela relação entre trabalho liquido produzido pelo ciclo e a quantidade de calor fornecida à caldeira. Logo,

$$\eta = \frac{w_{liq}}{q_{ent}} \tag{1}$$

onde:

$$w_{liq}$$
Trabalho liquido produzido pelo ciclo [kJ/kg] q_{ent} Quantidade de calor na caldeira [kJ/kg]

O rendimento do ciclo pode ser melhorado com alteração da configuração do sistema, entre essas alterações temos a retirada do vapor expandido no estágio de alta pressão da turbina, que retorna para a caldeira onde sofre um novo aquecimento e é redirecionado para o estágio de baixa pressão da turbina, gerando mais trabalho. Este ciclo é denominado ciclo de Rankine com Reaquecimento. Outro exemplo de melhoramento do ciclo consiste no chamado ciclo de Rankine Regenerativo.

3.2.2 Ciclo de Rankine Regenerativo

Uma alternativa para aumentar a eficiência do ciclo é extrair parte do vapor que se expande na turbina a uma pressão intermediária e direcioná-lo a um aquecedor de água de alimentação (AAA). O restante do vapor prossegue a expansão pela turbina até o estágio de baixa pressão. (PANOSSO, 2003)

Um aquecedor de água de alimentação (ou regenerador) é um dispositivo responsável pelo aquecimento do liquido que sai da bomba, também denominado água de alimentação, através da transferência de calor do vapor proveniente da turbina para a água de alimentação. Pode ser de dois tipos: aberto, onde ocorre a mistura do vapor e da água de alimentação, e fechado, caracterizado por não haver essa mistura.

3.2.2.1 Aquecedor de Água de Alimentação Aberto

Segundo Çengel (2013) um aquecedor de água de alimentação aberto nada mais é do que uma câmara de mistura na qual o vapor extraído da turbina e a água de alimentação são misturados. O fluido de trabalho sai do aquecedor como líquido saturado. A Figura 4 mostra uma representação esquemática de um ciclo de Rankine regenerativo ideal com aquecedor de água de alimentação aberto e seu diagrama T-s correspondente.

Figura 4 - Ciclo de Rankine regenerativo com AAA aberto e seu diagrama T-s.

Fonte: Adaptado de Shapiro (2013).

O vapor superaquecido no estado 5 entra na turbina e se expande isentropicamente até o estado 6, em que é retirado parte do vapor e direcionado ao AAA aberto operando à pressão de extração. O restante continua se expandindo até a pressão do condensador, no estado 7. Em

forma de liquido saturado no estado 1, a água sai do condensador e passa por uma bomba isentrópica, comprimindo-a e elevando a pressão até a pressão do AAA, no estado 2. A água é então dirigida ao aquecedor de água de alimentação, no qual é misturada ao vapor retirado da turbina. Tal mistura é realizada de modo que liquido saturado sai do aquecedor à sua pressão, no estado 3. Para elevar a pressão da água à pressão da caldeira, no estado 4, utiliza-se uma segunda bomba isentrópica. Por fim, ocorre a troca de calor na caldeira e a água é aquecida até o estado 5.

O rendimento do ciclo aumenta, pois menos calor é necessário ser trocado na caldeira o que reduz a utilização de combustível e proporciona ganhos econômicos. No entanto, a potência produzida pela turbina é ligeiramente menor, devido à extração de parte do vapor nesta. Paz (2002) compreende que se trata de um compromisso entre a diminuição da potencia gerada pela turbina e um aumento geral do rendimento do ciclo.

3.2.2.2 Aquecedor de Alimentação Fechado

No aquecedor de água de alimentação fechado não há mistura entre o vapor retirado da turbina e a água de alimentação. Neste tipo de aquecedor, a água de alimentação tem sua temperatura elevada até a temperatura de saída do vapor extraído. Semelhante ao AAA aberto, o fluido de trabalho deixa o aquecedor como líquido saturado à sua pressão. A Figura 5 ilustra o esquema representativo de um ciclo de Rankine Regenerativo com AAA fechado e seu diagrama T-s.

Fonte: Adaptado de Shapiro (2013).

Vapor se expande do estado 4 ao 5, no qual é tirado uma parte e direcionado ao AAA fechado a uma determinada pressão, condensando-se através da tubulação do dispositivo. Liquido saturado deixa o aquecedor no estado7. O condensado se junta a parcela de fluido oriundo da turbina no condensador através do purgador¹, no estado 8. Líquido saturado sai do condensador no estado 1 e passa por uma bomba isentrópica para aumentar sua pressão à pressão da caldeira, no estado 2. Ao passar pelo aquecedor, a água de alimentação tem sua temperatura aumentada, saindo no estado 3. O ciclo finaliza com a troca de calor na caldeira, a pressão constante, do estado 3 ao 4.

Çengel (2013) mostra uma comparação entre os dois tipos de aquecedor: o AAA aberto possui melhores características de transferência de calor, é mais simples e barato, e pode levar a água ao estado de saturação. Entretanto, é necessária uma bomba para cada aquecedor com o propósito de processar a água de alimentação. O AAA fechado é mais caro por causa de sua tubulação interna e possui menos efetividade na transferência de calor, pois os fluidos não entram em contato direto. No entanto, no AAA fechado não há a necessidade de bombas para cada aquecedor, uma vez que o vapor e a água de alimentação estão a diferentes pressões.

3.2.2.3 Aquecedores de Água de Alimentação Múltiplos

A introdução de vários aquecedores de água de alimentação proporciona um aumento no rendimento do ciclo de Rankine regenerativo. A escolha da quantidade de aquecedores usados depende principalmente dos aspectos econômicos, visto que o aumento do capital investido pelo acréscimo de componentes no sistema deve ser justificado pelo aumento da eficiência térmica do ciclo. (SHAPIRO, 2013)

3.2.3 Ciclo de Refrigeração por Absorção

O ciclo de refrigeração por absorção é um dos sistemas simulados no EES. O software apresenta combinações de substâncias e suas propriedades que podem ser utilizadas pelos

¹ Dispositivo que comprime o líquido de forma a baixar a sua pressão, evitando a saída do vapor para o condensador.

sistemas de refrigeração por absorção (SRA), facilitando o balanço de massa e energia, bem como os cálculos do coeficiente de performance (COP) do sistema, que trata da eficiência do SRA. Este sistema apresenta-se contextualmente como uma alternativa ao uso de sistemas de condicionamento de ambiente que utilizam fontes de energia escassa e portanto com custo elevado. Trata-se de um ciclo com eficiência considerada relativamente baixa ao ciclo usual de compressão a vapor, contudo abrange a utilização de fontes térmicas de energia, proporcionando um aproveitamento consciente na utilização de refrigeração de ambiente.

O ciclo de absorção pressupõe cinco componentes principais os quais recebem auxilio de outros dispositivos para o seu funcionamento. Para Menna (2008), há constantes trocas de calor e massa nestes equipamentos e por isso deve-se observar a configuração termodinâmica correta para uma melhor eficiência energética. Os dispositivos citados são: gerador, evaporador, condensador, absorvedor e dispositivos de expansão.

Quanto ao evaporador, Guimarães (2011) entende que é onde há uma transferência de calor, em que o refrigerante muda de líquido saturado para vapor saturado. Isso ocorre devido o par refrigerante/ absorvente está em uma temperatura menor que a do ambiente, ao entrar no dispositivo o fluido refrigerante absorve o calor do ambiente causando um aumento da entalpia e levando a fase de vapor.

Saindo do evaporador, o vapor do refrigerante é direcionado ao dispositivo denominado absorvedor, onde ocorrerá à absorção do vapor saturado pela solução fraca, com menor concentração de refrigerante, que retorna do gerador, isso acontece à baixa pressão proveniente do evaporador. Para Menna (2008), trata-se de um processo exotérmico, visando evitar que a absorção do vapor pela solução cesse devido à temperatura chegar aos níveis de equilíbrio.

Guimarães (2011) ensina que o processo que ocorre no absorvedor opera à pressão de evaporação, pois este está diretamente conectado ao evaporador. Basicamente, ocorre a transferência de massa que é a absorção do vapor pela solução fraca e simultaneamente a transferência de calor que diz respeito ao arrefecimento da mistura.

O gerador é onde há a separação das substâncias a alta pressão e ocorre devido ao calor transferido por uma fonte térmica. Segundo Menna (2008), o gerador recebe de um trocador de calor o fluido de trabalho, como está diretamente ligada a uma fonte térmica há um aumento na temperatura da solução, o que ocasiona a evaporação de um dos componentes

da mistura devido à diferença de pontos de evaporação das substâncias para a pressão no gerador.

Segundo Guimarães (2011), no condensador ocorre um processo de rejeição de calor do fluido refrigerante à pressão constante. Neste processo o fluido vaporizado no gerador é condensado até se tornar líquido saturado e será encaminhado a um dispositivo de expansão que irá sustentar a diferença de pressão do condensador para o evaporador. Após segue ao evaporador para sofrer o novo processo de evaporação. É quando ocorre a entrega do calor para um meio externo.

Entre o gerador e o absorvedor, e entre o condensador e o evaporador existe a necessidade de instalação de dispositivos de expansão. A válvula entre o absorvedor e o gerador tem função de controlar a vazão da solução para manter a concentração no absorvedor e o dispositivo de expansão entre condensador e evaporador sustentar a diferença de pressão entre os dois componentes e provoca o efeito refrigerante. Guimarães (2011) afirma que esses dispositivos são responsáveis pelo controle necessário para o pleno funcionamento do ciclo.

Para aumentar a pureza do sistema alguns autores propõem o uso de retificadores. Trata-se de um componente responsável pelo equilíbrio do vapor de água presente na solução que sai do gerador. Esta solução apresenta-se levemente superaquecida. O ideal para que o ciclo não tenha interrupção é que esta água seja reduzida ao máximo. Ao chegar ao retificador a solução passará por um processo de resfriamento, que proporciona a condensação do vapor de água. A água condensada retorna ao gerador, aumentando a concentração do vapor de amônia que vai ao evaporador. Portanto, o retificador é um equipamento importante no que concernem os aspectos técnicos do ciclo.

Para calcular a eficiência térmica de um SRA utiliza-se o Coeficiente De Performance (COP) que pode ser expresso por: (GUIMARÃES, 2011).

$$COP = \frac{Q_{evap}}{Q_{ge} + W_b}$$
(2)

Onde:

Q _{evap}	Fluxo de calor no evaporador [kJ/s]
Qge	Fluxo de calor no gerador [kJ/s]

3.2.3.1 Misturas Binárias

O sistema de absorção utiliza pares de fluidos na sua operação, geralmente amônia – água ou água - brometo de lítio. O princípio de funcionamento do ciclo de refrigeração por absorção é baseado na relação desses fluídos. Quando o fluido refrigerante se combina a uma substância absorvente, há uma geração de calor. Para Oliveira (2015), esse comportamento se da devido às propriedades químicas dessas substâncias. Para separarmos a mistura resultante, basta fornecer calor proveniente de uma fonte térmica. Os fluidos são responsáveis pela absorção desse calor ao passar do estado líquido para o gasoso. O que delimita a viabilidade de uso desses fluidos no sistema de refrigeração por absorção são critérios como estabilidade química, toxidade, corrosividade entre outros.

A tabela abaixo apresenta possíveis combinações de pares refrigerantes - absorvente. As mais utilizadas como propõem a literatura, são amônia – água e água - brometo de lítio.

REFRIGERANTE	ABSORVENTE		
Água	Ácido Sulfúrico		
Amônia, Metil amina ou outras aminas alifáticas.	Água		
Água	Brometo de lítio		
Álcool metílico	Brometo de Lítio		
Álcool etílico	Cloreto de Lítio		
Cloreto de metileno	Dimetil éter tetraetileno glicol		
Metil amina	Glicol etílico		
Água	Hidróxido de sódio ou potássio ou misturas		
Cloreto de etila	Tetracloroetano		

Tabela 1- Exemplos de misturas binárias utilizadas no ciclo de absorção.

Fonte: Adaptado de Jucá (1980).

3.2.4 Sistemas Térmicos e Geração de Energia

A geração de energia permanece sendo motivo de preocupação mundial devido às principais fontes apresentar uso intenso de recursos provenientes da natureza. Com o emprego de combustíveis fósseis e o aumento da demanda de energia, existe a necessidade de um melhor planejamento dos países no que diz respeito às usinas e seus ciclos de vida. O ciclo de vida de uma usina é aquele que se inicia com a extração das fontes e termina com a desativação da usina, para Shapiro (2013), isso engloba a instalação da usina, a extração dos insumos, o tratamento dos efeitos ao meio ambiente e o descarte dos resíduos até a retirada do funcionamento da usina. Consequentemente, a geração de energia demanda um planejamento consciente.

No Brasil, o segmento que priorizava a utilização das usinas hidrelétricas, tem mudado o enfoque para outras fontes, devido os impactos ambientais dessas usinas e a diminuição do nível dos rios no sudeste do país, o que naturalmente direciona o mercado a suprir a demanda viabilizando fontes alternativas. Mascarenhas (2014) apresenta o conceito de produção descentralizada, onde há um aproveitamento de diversas fontes de energia para obter um aproveitamento eficiente, com destaque para fontes renováveis e a cogeração. Para a autora as fontes de calor de baixa temperatura serão vistas como os recursos energéticos do futuro.

Os sistemas de potência a vapor (SPV) viabilizam diversos tipos de fontes para operar as usinas com o ciclo de Rankine, essas fontes são: combustível fóssil, combustível nuclear, energia solar, geotérmica, biomassa entre outras. Usualmente no Brasil a utilização do ciclo tem possibilitado a ampliação do uso da cogeração, com o aproveitamento de biomassa do bagaço da cana de açúcar, rejeito térmico de indústria entre outros. O ciclo de Rankine pode ser visto como uma promissora tecnologia de geração de energia de forma a abranger o uso de produção descentralizada, daí a necessidade de estudos nessa área. (SHAPIRO, 2013)

Não obstante o ciclo de refrigeração por absorção com aplicação ao condicionamento de ambiente, também pode ser impulsionado com fontes térmicas. Essa tecnologia pode substituir o condicionamento de ar por compressão a vapor, que utiliza a energia em forma de trabalho para impulsionar o ciclo, o que conduz o uso amplo de energia não renovável. Para

Rosa (2012), além da escassez das fontes de combustíveis fósseis, a emissão de gases para atmosfera caracteriza–se como principais desvantagens dos sistemas de refrigeração usuais.

A crescente preocupação do eficiente consumo de energia vem disseminando pesquisas e estudos com o objetivo de minimizar o uso de recursos escassos, e estabilizar o mercado incluindo fontes alternativas. Para Tassini (2012), a energia é um importante insumo, o qual deve ser cautelosamente gerido por estar relacionada diretamente ao desenvolvimento econômico e social de um país. Assim, o uso de sistemas térmicos pode ser uma solução interessante na disseminação de uso fontes descentralizadas de energia quando aplicada nos ciclos de rankine e de absorção.

4 METODOLOGIA

4.1 MODELAGEM DOS SISTEMAS TÉRMICOS

A modelagem dos sistemas foi realizada de forma a demonstrar a eficácia da simulação do software EES por meio de comparação coma a resolução analítica do ciclo de rankine - auxiliada pelo software CATT - e balanços de massa e energia no ciclo de refrigeração por absorção.

4.1.1 Balanço de massa e energia do sistema

A massa não pode ser criada nem destruída durante um processo. Em sistemas abertos (volume de controle) a massa pode atravessar a fronteira do sistema, contudo deve-se levar em conta a quantidade de massa que entra e sai do volume de controle, diferentemente de um sistema fechado, em que a massa do sistema permaneça constante. (ÇENGEL, 2013)

O princípio da conservação de massa estabelece a relação do fluxo de massa que entra e do fluxo de massa que sai do volume de controle durante o intervalo de tempo Δ_t Assim temos,

$$\Delta m_{vc} = m_{ent} - m_{sai} \tag{3}$$

O princípio de conservação de massa para um processo em regime permanente aplicado a um volume de controle, com várias entradas e saídas é expresso por:

$$\sum_{ent} \dot{m}_{ent} = \sum_{sai} \dot{m}_{sai} \tag{4}$$

$$\frac{dm_{vc}}{dt} = \sum_{ent} \dot{m}_{ent} - \sum_{sai} \dot{m}_{sai} = 0$$
⁽⁵⁾

Quando o dispositivo a ser analisado possui apenas uma entrada e uma saída temos o escoamento a regime permanente em corrente única, nesse caso, utiliza-se a seguinte expressão:

$$\dot{m}_{ent} = \dot{m}_{sai} \tag{6}$$

A lei de conservação de energia afirma que a energia não pode ser criada, apenas transformada. Ou seja, não se pode criar trabalho pode-se, apenas transformar calor no mesmo. Assim, a primeira lei da termodinâmica estabelece que em determinado processo, componente ou sistema a energia deve ser vista de forma conservativa. (ÇENGEL, 2013)

Em termos matemáticos devem-se considerar as formas de energia existentes para o equacionamento da primeira lei da termodinâmica, assim têm-se: calor, trabalho e dependendo do sistema estudado, deve-se considerar a energia das moléculas que pode ser dividida em energia interna, potencial e cinética. Considerando ainda a entalpia do sistema, temos de maneira geral a primeira lei da termodinâmica:

$$\frac{dE}{dt} = Q + W + \sum_{ent} \dot{m}_{ent} (h_{ent} + \frac{V^2}{2} + gz_{ent}) - \sum_{sai} \dot{m}_{sai} (h_{sai} + \frac{V^2}{2} + gz_{sai})$$
(7)

Onde:

QFluxo de calor [kJ/s]
$$\dot{W}$$
Fluxo de trabalho [kJ/s] \dot{m} Fluxo de massa que entra no sistema [kg/s]hEntalpia que entra no sistema [kJ/kg] V^2 Energia cinética por unidade de massa [kJ/kg]gzEnergia potencial por unidade de massa [kJ/kg]

Aplicando a equação 7 ao conceito de volume de controle, temos:

$$\frac{dE_{vc}}{dt} = Q_{vc} + W_{vc} + \sum_{ent} \dot{m}_{ent} (h_{ent} + \frac{V^2}{2} + gz_{ent}) - \sum_{sai} \dot{m}_{sai} (h_{sai} + \frac{V^2}{2} + gz_{sai})$$
(8)

Geralmente, em sistemas térmicos não há variação de velocidade significativa entre a entrada e a saída do volume de controle, bem como não há grandes alterações de altura nestes, sendo, portanto, desconsiderados nas analises termodinâmicas.

4.1.2 Ciclo De Rankine

4.1.2.1 Ciclo Regenerativo com múltiplos aquecedores

Os balanços de massa e energia são aplicados em cada componente do ciclo, considerado como volume de controle determinando as propriedades de cada estado indicados pela numeração da Figura 6.

Figura 6 - Ciclo de Rankine Regenerativo com múltiplos aquecedores.

Fonte: Adaptado de Shapiro (2013).

Bomba 1

Este componente possui uma única corrente de entrada e saída. A expressão para o balanço de massa torna-se:

$$\dot{m}_2 = \dot{m}_1 \tag{9}$$

Não há troca de calor entre este dispositivo e os demais componentes, porém a bomba consome trabalho para seu funcionamento. Assim o balanço de energia se expressa por:

$$\dot{w}_{B1} = h_2 - h_1 \tag{10}$$

AAA aberto

O AAA aberto é um trocador de calor com três correntes de entrada e uma corrente de saída, o balanço de massa para este equipamento é expresso abaixo.

$$\dot{m}_8 + \dot{m}_2 + \dot{m}_{11} = \dot{m}_3 \tag{11}$$

Os trocadores de calor são considerados dispositivos adiabáticos. Como não há realização de trabalho, o balanço de energia será:

$$\dot{m}_8 * h_8 + \dot{m}_2 * h_2 + \dot{m}_{11} * h_{11} = \dot{m}_3 * h_3 \tag{12}$$

Bomba 2

A bomba2 possui também apenas uma corrente de entrada e saída e seu balanço de massa consiste em:

$$\dot{m}_4 = \dot{m}_3 \tag{13}$$

Semelhante à primeira, a segunda bomba não troca calor com sua vizinhança, mas há a realização de trabalho, então:

$$\dot{w}_{B2} = h_4 - h_3 \tag{14}$$

AAA fechado

Com duas entradas e duas saídas, o balanço de massa e energia aplicado a este trocador fornece:

$$\dot{m}_5 + \dot{m}_{10} = \dot{m}_4 + \dot{m}_7 \tag{15}$$

$$\dot{m}_5 * h_5 + \dot{m}_{10} * h_{10} = \dot{m}_4 * h_4 + \dot{m}_7 * h_7 \tag{16}$$

Purgador

O purgador é tão somente uma ferramenta usada para a passagem somente de liquido para o dispositivo seguinte. Os balanços de massa e energia serão:

$$\dot{m}_{10} = \dot{m}_{11} \tag{17}$$

$$h_{10} = h_{11} \tag{18}$$

Caldeira

A caldeira é responsável pela troca de calor de uma fonte quente para o fluido de trabalho, sem a realização ou produção de trabalho os balanços de massa e energia ficam:

$$\dot{m}_5 = \dot{m}_6 \tag{19}$$

$$\dot{q}_{entra} = h_6 - h_5 \tag{20}$$

Turbina

Supondo que os estágios da turbina são um único volume de controle, a equação de balanço de massa será:

$$\dot{m}_6 = \dot{m}_7 + \dot{m}_8 + \dot{m}_9 \tag{21}$$

O fluxo de trabalho total da turbina será a soma dos fluxos de trabalho em cada estágio, logo, aplicando o balanço de energia tem-se:

$$\dot{w}_T = \dot{w}_{T1} + \dot{w}_{T2} + \dot{w}_{T3} \tag{22}$$

$$\dot{w}_T = \dot{m}_6 * (h_6 - h_7) + \dot{m}_8 * (h_7 - h_8) + \dot{m}_9 * (h_8 - h_9)$$
(23)

Condensador

No condensador ocorre troca de calor do fluido de trabalho para uma fonte com temperatura menor. Com uma entrada e uma saída e desprezando-se o trabalho, tem-se:

$$\dot{m}_9 = \dot{m}_1 \tag{24}$$

$$\dot{q}_{sai} = h_9 - h_1$$
 (25)

4.1.2.2 Resolução Analítica do Ciclo de Rankine Regenerativo com Múltiplos Aquecedores

Um ciclo de potência a vapor regenerativo com dois aquecedores de água de alimentação, um aberto e outro fechado será considerado. Vapor d'água entra no primeiro estágio da turbina a 8 MPa, 480°C e se expande até 2 MPa. Parte do vapor é extraída a 2 MPa e levado ao aquecedor de água de alimentação fechado. O restante se expande através da turbina de segundo estágio para 0,3 MPa, quando uma quantidade adicional é extraída e levada para o aquecedor de água de alimentação aberto, que opera a 0,3 MPa. O vapor que se expande através da turbina de terceiro estágio sai à pressão do condensador de 8kPa. A água de alimentação deixa o aquecedor fechado a 205°C, 8 MPa e o condensado sai como liquido saturado a 2 MPa é purgado para o aquecedor aberto. Líquido saturado a 0,3 MPa sai do aquecedor de água de alimentação aberto. A potência líquida de saída do ciclo é de 100MW. Considerando os estágios da turbina e bombas isentrópicos, determina-se a eficiência térmica e a vazão mássica de vapor d'água que entra na primeira turbina em kg/h:

Utilizou-se o software CATT para a determinação das propriedades em cada estado, como a seguir:

Estado 1

$$P_1 = P_9 = 8 \ kPa$$

liquido saturado $h_1 = 173,9 \frac{kJ}{kg}; \ s_1 = 0,5925 \frac{kJ}{kgK}$

Estado 2

$$P_{2} = P_{8} = 0,3 MPa \\ s_{2} = s_{1} = 0,5925 \frac{kJ}{kgK} \\ h_{2} = 174,1 \frac{kJ}{kg}$$

Estado 3

$$P_{3} = P_{8} = 0.3 MPa \\ liquido saturado \} h_{3} = 561.4 \frac{kJ}{kg}; s_{3} = 1.762 \frac{kJ}{kgK}$$

Estado 4

$$P_4 = P_6 = 8 MPa \\ s_4 = s_3 = 1,762 \frac{kJ}{kgK} h_4 = 569,7 \frac{kJ}{kg}$$

Estado 5

$$P_{5} = 8 MPa \\ T_{5} = 205^{\circ} C \} h_{5} = 877.5 \frac{kJ}{kg}$$

Estado 6

Estado 7

$$P_{7} = 2 MPa \\ s_{7} = s_{6} = 6,658 \frac{kJ}{kgK} h_{7} = 2963 \frac{kJ}{kg}$$

Estado 8

$$P_{8} = 0,3 MPa$$

$$s_{8} = s_{7} = s_{6} = 6,658 \frac{kJ}{kgK} h_{8} = 2590 \frac{kJ}{kg}$$

Estado 9

$$P_{9} = 8 \, kPa$$

$$s_{9} = s_{8} = s_{7} = s_{6} = 6,658 \frac{kJ}{kgK} h_{9} = 2083 \frac{kJ}{kg}$$

$$P_{10} = 2 MPa$$
líquido saturado $h_{10} = 908,8 \frac{kJ}{kg}$

Estado 11

$$h_{11} = h_{10} = 908,8 \frac{kJ}{kg}$$

Equações de balanço nos aquecedores

No ciclo de Rankine regenerativo com múltiplos aquecedores, uma fração do vapor é extraído no primeiro estágio da turbina e direcionado ao AAA fechado. Essa fração é denominada por y' e é determinada através da equação de balanço de energia neste aquecedor. Avaliando esta variável na equação (16) tem-se:

$$(1) * h_{5} + (y') * h_{10} = (1) * h_{4} + (y') * h_{7}$$
$$y' = \frac{h_{5} - h_{4}}{h_{7} - h_{10}}$$
$$y' = \frac{877.5 - 569.7}{2963 - 908.8}$$
$$y' = 0.1498$$

No segundo estagio da turbina uma fração adicional de vapor é retirada e encaminhada para o AAA aberto. Representada por y'' essa fração é estabelecida pelo balanço de energia no aquecedor aberto. Modificando a equação (12) em termos y''obtém-se:

$$(y'') * h_8 + (1 - y' - y'') * h_2 + (y') * h_{11} = (1) * h_3$$
$$y'' = \frac{y' * (h_2 - h_{11}) + h_3 - h_2}{h_8 - h_2}$$
$$y'' = \frac{0,1498 * (174,1 - 908,8) + 561,4 - 174,1}{2590 - 174,1}$$
$$y'' = 0,1172$$

Equações de balanço nas turbinas e bombas

Levando em consideração as frações extraídas nos dois estágios da turbina na equação (24) tem-se:

$$\dot{w}_T = (1) * (h_6 - h_7) + (1 - y') * (h_7 - h_8) + (1 - y' - y'') * (h_8 - h_9)$$

$$\dot{w}_T = 3348 - 2963 + (1 - 0,1498) * (2963 - 2590) + (1 - 0,1498 - 0,1172) * (2590 - 2083)$$

$$\dot{w}_T = 1073,75 \frac{kJ}{kg}$$

- Bombas

O trabalho total produzido pelas bombas será a soma do trabalho da bomba 1 e da bomba 2. Assim,

$$\dot{w}_B = \dot{w}_{B1} + \dot{w}_{B2} \tag{26}$$

Atribuindo as expressões dadas pelas equações (10) e (14) com seus respectivos fluxos de massa, chega-se a:

$$\dot{w}_B = \dot{m}_1 * (h_2 - h_1) + \dot{m}_3 * (h_4 - h_3)$$
(27)

Levam-se ainda em consideração as frações de vapor extraídas nas turbinas, logo,

$$\dot{w}_B = (1 - y' - y'') * (h_2 - h_1) + (1) * (h_4 - h_3)$$
$$\dot{w}_B = (1 - 0,1498 - 0,1172) * (174,1 - 173,9) + 569,7 - 561,4$$
$$\dot{w}_B = 8,4466 \frac{kJ}{kg}$$

Equação de balanço na caldeira

Empregando a equação (20) encontra-se a quantidade de calor transferida na caldeira.

$$\dot{q}_{ent} = 3348 - 877,5$$

 $\dot{q}_{ent} = 2470,5 \frac{kJ}{kg}$

Eficiência térmica

Por fim, aplica-se a equação (1) para determinar a eficiência térmica do ciclo de Rankine:

$$\eta = \frac{1073,75 - 8,4466}{2470,5}$$
$$\eta = 43,12\%$$

Para o calculo da vazão mássica de vapor d'agua que entra no primeiro estágio da turbina usa-se a relação

$$\dot{w}_{liq} = \dot{m}_6 * (\dot{w}_T - \dot{w}_b) \tag{28}$$

Isolando \dot{m}_6 e substituindo os valores encontra-se o fluxo de massa desejado:

$$\dot{m}_6 = \frac{100000}{(1073,75 - 8,4466)}$$
$$\dot{m}_6 = 93,86 \frac{kg}{s}$$

As equações abaixo expressam o fluxo de massa através dos estágio da turbina, admitindo as frações retiradas em cada estado.

$$\dot{m}_7 = y' * \dot{m}_6$$
 (29)

$$\dot{m}_8 = y'' * \dot{m}_6 \tag{30}$$

$$\dot{m}_9 = (1 - y' - y'') * \dot{m}_6 \tag{31}$$

Usando as relações expressas pelas equações (30), (31) e (32) e os valores encontrados para a vazão mássica no primeiro estágio da turbina a frações de vapor extraídas, encontra-se o fluxo de massa nos demais componentes do ciclo, como a seguir:

$$\dot{m}_7 = 0,1498 * 93,86$$
$$\dot{m}_7 = 14,06 \frac{kg}{s}$$
$$\dot{m}_8 = 0,1172 * 93,86$$
$$\dot{m}_8 = 11,00 \frac{kg}{s}$$
$$\dot{m}_9 = (1 - 0,1498 - 0,1172) * 93,86$$

.

$$\dot{m}_9 = 68,80 \frac{kg}{s}$$

4.1.3 Sistema de Refrigeração por Absorção

A Figura 7 mostra um esquema representativo do ciclo de refrigeração por absorção no EES. Nesta configuração foram utilizados como fluído de trabalho a Amônia como refringente e Água como absorvente.

Figura 7 - Esquema de um sistema simples de Refrigeração por Absorção.

É oportuno compreender que o ciclo opera com dois níveis de pressão, os quais são estabelecidos pelas temperaturas de evaporação e condensação. Analisando as características da solução, temos que no gerador é adicionado calor de uma fonte a alta de temperatura, esse calor faz com que parte da amônia se vaporize e se separe da solução como podemos observar no ponto um do sistema.

O vapor de amônia superaquecido - ponto dois do sistema - segue para o condensador onde o calor de condensação é removido do ciclo, por meio de água ou ar que o resfria a uma alta pressão, fazendo com que o refrigerante retorne para a fase líquida à temperatura de condensação. A amônia líquida, à alta pressão, passa por uma válvula de expansão – ponto quatro do sistema - onde ocorre uma brusca queda de pressão.

Fonte: EES (2017).

É nesse momento que temos o fenômeno denominado expansão, que diminui a temperatura da amônia que segue então para o evaporador conforme o ponto cinco do sistema. No evaporador, a amônia líquida, a uma baixa pressão e a uma baixa temperatura, retira calor do meio que se deseja resfriar, retornando novamente para a fase de vapor à temperatura de evaporação.

Após a separação das substâncias no gerador, no início do ciclo, a solução torna-se uma solução fraca ou pobre em refrigerante (amônia) – ponto três do sistema. Essa solução pobre, a uma alta temperatura e a uma alta pressão, passa pelo trocador de calor e válvula de expansão - ponto nove - seguindo para o absorvedor - ponto dez do sistema. No absorvedor, a solução absorve vapor de amônia oriundo do evaporador – ponto seis do sistema.

Trata-se, portanto, de um processo de absorção exotérmico onde o calor de absorção precisa ser removido do ciclo para que o processo não sofra interrupção, mantendo constante a temperatura de absorção.

A eficiência energética do ciclo está intimamente relacionada com as trocas de massa e energia que ocorre nos componentes, sendo necessário analisar os processos considerando as características termodinâmicas de cada componente para compreender quais as situações devem ser aprimoradas e viabilizadas para o uso no condicionamento de ar aplicado a refrigeração de ambiente.

Gerador

Balanço de massa:

$$\dot{m}_1 = \dot{m}_2 + \dot{m}_3 \tag{32}$$

Balanço de energia:

$$\dot{m}_1 * h_1 + \dot{Q}_{ge} = \dot{m}_2 * h_2 + \dot{m}_3 * h_3$$
 (33)

Balanço de concentração

$$\dot{m}_1 * x_1 = \dot{m}_2 * x_2 + \dot{m}_3 * x_3 \tag{34}$$

Condensador

Balanço de massa:

$$\dot{m}_2 = \dot{m}_4 \tag{35}$$

Balanço de energia:

$$\dot{Q}_{cond} = \dot{m}_2 * (h_2 - h_4) \tag{36}$$

Balanço de concentração:

$x_2 = x_4 \tag{3}$	7))
---------------------	---	---	---

Válvula de expansão 1

Balanço de massa:

 $\dot{m}_4 = \dot{m}_5 \tag{38}$

Balanço de energia:

 $h_4 = h_5 \tag{39}$

Balanço de concentração:

 $x_4 = x_5 \tag{40}$

Evaporador

Balanço de massa:

 $\dot{m}_5 = \dot{m}_6 \tag{41}$

Balanço de energia:

$$\dot{Q}_{evap} = \dot{m}_2 * (h_6 - h_5) \tag{42}$$

Balanço de concentração:

 $x_5 = x_6 \tag{43}$

Absorvedor

Balanço de massa:

 $\dot{m}_6 + \dot{m}_{10} = \dot{m}_7 \tag{44}$

Balanço de energia:

$$\dot{m}_2 * h_6 + \dot{m}_3 * h_{10} = \dot{m}_1 * h_7 + \dot{Q}_{abs} \tag{45}$$

Balanço de concentração:

$$\dot{m}_6 * x_6 + \dot{m}_{10} * x_{10} = \dot{m}_7 * x_7 \tag{46}$$

Trocador de calor

Balanço de massa:

$$\dot{m}_3 = \dot{m}_9 \tag{47}$$

$$\dot{m}_8 = \dot{m}_1 \tag{48}$$

Balanço de energia:

$$\dot{m}_3 * (h_3 - h_9) = \dot{m}_1 * (h_1 - h_8) \tag{49}$$

Balanço de concentração:

$$x_3 = x_9 \tag{50}$$

$$x_8 = x_1 \tag{51}$$

Válvula de expansão 2

Balanço de massa:

 $\dot{m}_9 = \dot{m}_{10}$ (52)

Balanço de energia:

 $h_9 = h_{10} (53)$

Balanço de concentração:

<i>x</i> 9	$= x_{10}$	(54)

Bomba de circulação

Balanço de massa:

 $\dot{m}_7 = \dot{m}_8 \tag{55}$

Balanço de energia:

 $h_7 = h_8 \tag{56}$

Balanço de concentração:

$$x_7 = x_8 \tag{57}$$

4.2 SIMULAÇÃO DOS SISTEMAS TÉRMICOS

4.2.1 Ciclo de Rankine Regenerativo com múltiplos aquecedores

A simulação do ciclo de Rankine regenerativo com dois aquecedores de água de alimentação, um aberto e um fechado, se deu pela inserção das equações de balanço de massa e energia, bem como a determinação das propriedades em cada estado do ciclo na "Equation Window", mostrada na Figura 8. O código para esta simulação está presente no Anexo A.

Após verificar se o número de equações é o mesmo de variáveis, utiliza-se o botão "Solve" para resolução do código.

Figura 8 - "Equation Window" contendo o código para o ciclo com múltiplos aquecedores.

Fonte: Próprios autores (2017).

A "Solution Window" apresenta os resultados obtidos pela execução do código, possíveis erros relacionados às unidades e sugere unidades para variáveis não mensuradas no código. A Figura 9 indica tal janela mostrando os resultados dos cálculos realizados das equações inseridas na "Equation Window".

Es Solution			- • •	
Main				
Unit Settings: SI C k	Pa kJ mass deg			
η = 0,4319	q _{entra} = 2471 [kJ/kg]	w _b = 8,465 [kJ/kg]	Ŵliq = 100000 [kW]	
w _t = 1076 [kJ/kg]	y _{2linha} = 0,1149	ylinha= 0,1497		
Click on this line to see the array variables in the Arrays Table window No unit problems were detected.				
EES suggested units (shown in purple) for h[1] h[2] h[3] h[4] h[5] h[6] .				
Calculation time = ,2 se	с.			
<			>	

Figura 9 - "Solution Window" para o ciclo regenerativo com múltiplos aquecedores.

Fonte: Próprios autores (2017).

No EES, índices indicados entre colchetes são reconhecidos como variáveis de matrizes. Após a execução do código estas variáveis são exibidas em uma janela denominada "Arrays Table". No caso do ciclo de Rankine estudado usou-se a pressão, temperatura, título, entalpia, entropia e fluxo de massa como variáveis em forma de matrizes, como mostra a Figura 10.

Figura 10 - "Arrays Table" para o caso do ciclo regenerativo com múltiplos aquecedores.

EEs Arrays Ta	able					
Main						
Sort	1 ₽ _i [kPa]	2 T _i [C]	³ ⊻ Xi	₄ ▲ h _i [kJ/kg]	₅ ⊾ s _i [kJ/kg-K]	⁶ ,.⊻ m _i
[1]	8	41,52	0	173,9	0,5925	68,9
[2]	300	41,53		174,1	0,5925	68,9
[3]	300	133,6	0	561,6	1,672	93,69
[4]	8000	134,3		569,9	1,672	93,69
[5]	8000	205		877,4	2,368	93,69
[6]	8000	480		3349	6,659	93,69
[7]	2000	274,9		2963	6,659	14,02
[8]	300	133,6		2590	6,659	10,76
[9]	8	41,52		2083	6,659	68,9
[10]	2000	212,4	0	908,7	2,447	14,02
[11]	300	133,6		908,7	2,525	14,02

Fonte: Próprios autores (2017).

O EES permite elaborar o diagrama T-s de variadas substâncias, dentre elas o vapor d'água, fluido detrabalho utilizado no ciclo de Rankine. O diagrama da Figura 11 foi obtido para o ciclo regenerativo com múltiplos aquecedores.

Figura 11 - Diagrama para o caso do ciclo com múltiplos aquecedores.

Fonte: Próprios autores (2017).

O diagrama T-s exposto acima exibe o comportamento do fluido de trabalho em cada parte do ciclo, identificados pela numeração de 1 a 11. Alguns pontos não são exibidos no grafico, pois os valores com os pontos seguintes são aproximados de tal forma que apenas a função "Zoom Selection" é capaz de expor tais pontos.

4.2.2 Ciclo de Refrigeração por Absorção

A simulação do ciclo de refrigeração por absorção se desenvolveu através do menu "Examples" do EES, submenu "Procedures and Functions", ilustrada na Figura 12, que abre a janela "Select file" da Figura 13, onde há um modelo de ciclo de absorção utilizando amônia como refrigerante e água como absorvente. Esta ferramenta mostra na "Equations Window" o código do modelo, indicado no Anexo B, salvo na rotina do EES.

ES Professional:	
File Edit Search Options Calculate Tables Plots Windows Help	Examples
🗠 🖬 🟝 🚚 🐏 🖳 📰 📰 🔽 🖬 🛲 🖂 🗔 📖 🖾	Getting started with EES
Figure State	Animation
	Arrays
1	Complex numbers
	Convergence Issues, Guess Values and Limits
	Curve-fitting and regression
	Diagram Window
	Differential equations
	Directives
	Duplicate command
	Formatted equations and special symbols
	Functions, user-written
	Integration
	Lookup Table and Interpolate function
	Minimize or maximize
	Modules and Subprograms
	Parametric table
X Line: 1 Char: 1 Wrap: On Insert Caps Lock: On SI C kPa k	Plotting
	Procedures and Functions
	Professional Version
	Properties, thermodynamic
	SUM function
	Uncertainty calculations
	Unit conversion

Figura 12 - Funções do Menu "Examples" do EES.

Figura 13 - Modelo do Sistema de Refrigeração Por Absorção do EES.

Fonte: EES (2017).

Utilizando o botão "Solve" chegamos a janela abaixo que mostra todos os cálculos do sistema incluindo o coeficiente de performance (COP) que neste caso está na ordem de 0,322. O código pode ainda ser modificado a fim de se obter um melhor desempenho do ciclo.

Es Solution								
Main tk Key Variables				<u>^</u>				
Unit Settings: SI C kPa kJ mass deg								
CheckQ = -0,000 [kJ/s]	COP = 0,322	ε = 0,689	h ₁ = 132,2 [kJ/kg]	h ₁₀ = 44,8 [kJ/kg]				
h ₂ = 1611,3 [kJ/kg]	h ₃ = 312,1 [kJ/kg]	h ₄ = 60,4 [kJ/kg]	h5 = 60,4 [kJ/kg]	h ₆ = 958,3 [kJ/kg]				
h7 = -102,8 [kJ/kg]	h ₈ = -102,8 [kJ/kg]	hg = 44,8 [kJ/kg]	h _e = 44,8 [kJ/kg]	h _{m,6} = 1530,0 [kJ/kg]				
h _{m,9} =-75,6 [kJ/kg]	m ₁ = 1,000 [kg/s]	m ₂ = 0,121 [kg/s]	m ₃ = 0,879 [kg/s]	P ₁ = 13,50 [bar]				
P ₂ =13,50 [bar]	P ₃ = 13,50 [bar]	P ₄ =13,50 [bar]	P5=1,70 [bar]	P ₆ =1,70 [bar]				
P7=1,70 [bar]	Pg=13,50 [bar]	P _{high} =13,50 [bar]	P _{low} = 1,70 [bar]	P _{m,6} = 1,70 [bar]				
P _{m,9} = 13,50 [bar]	Qu1 =-0,001 [kJ/s]	Qu2 =1,000 [kJ/s]	Qu3 = 0,000 [kJ/s]	Qu4 =-0,001 [kJ/s]				
Qu5 = 0,165 [kJ/s]	Qu6 = 0,783 [kJ/s]	Qu6m = 1,000 [kJ/s]	Qu7 =-0,001 [kJ/s]	Qu9 =-0,001 [kJ/s] ■				
Qu9m = -1,000E-03 [kJ/s]	Q _{abs} = 257,983 [kJ/s]	Q _{cond} = 187,4 [kJ/s]	Q _{evap} = 108,5 [kJ/s]	Q _{gen} = 336,9 [kJ/s]				
s ₁ = 0,999 [kJ/kg-K]	s ₂ = 5,104 [kJ/kg-K]	s ₃ = 1,452 [kJ/kg-K]	s ₄ = 0,430 [kJ/kg-K]	s5 = 0,506 [kJ/kg-K]				
s ₆ = 3,985 [kJ/kg-K]	s7 = 0,283 [kJ/kg-K]	sg = 0,704 [kJ/kg-K]	s _{m,6} = 5,849 [kJ/kg-K]	s _{m,9} = 3,208E-01 [kJ/kg-K]				
T ₁ = 353,1 [K]	T ₂ = 388,1 [K]	T ₃ = 388,1 [K]	⊤ ₄ = 300,1 [K]	T ₅ = 252,9 [K]				
⊤ ₆ =272,1 [K]	T ₇ = 300,1 [K]	Tg= 328,1 [K]	T _{min} = 333,2 [K]	T _{m,9} = 300,1 [K]				
u ₁ = 1,3E+02 [kJ/kg]	u ₂ = 1,4E+03 [kJ/kg]	u ₃ = 3,1E+02 [kJ/kg]	u ₄ = 5,8E+01 [kJ/kg]	u5 = 4,1E+01 [kJ/kg]				
u ₆ = 8,6E+02 [kJ/kg]	u7 = -1,0E+02 [kJ/kg]	ug = 4,3E+01 [kJ/kg]	u _{m,6} = 1,4E+03 [kJ/kg]	u _{m,9} = -7,7E+01 [kJ/kg]				
v ₁ = 1,218E-03 [m3/kg]	v ₂ = 1,306E-01 [m3/kg]	v ₃ = 1,241E-03 [m3/kg]	∨ ₄ = 1,553E-03 [m3/kg]	∨5 = 1,166E-01 [m3/kg]				
∨ ₆ = 5,956E-01 [m3/kg]	v7 = 1,153E-03 [m3/kg]	vg = 1,146E-03 [m3/kg]	v _{m,6} = 9,377E-01 [m3/kg]	∨ _{m,9} = 0,001 [m3/kg]				
×1 = 0,380	× ₂ = 0,909	×3 = 0,307	×4 = 0,909	×5 = 0,909				
×6 = 0,909	×7 = 0,380	×9 = 0,307	× _{m,6} = 0,909	x _{m,9} = 0,307				
				-				

Figura 14 - Resultado da Simulação do Modelo de Refrigeração Por Absorção.

Fonte: EES (2017).

O EES apresenta ainda na janela "Diagram Window" a imagem representaiva do sistema que permite a visualização do fluxo do ciclo conforme Figura 7.

5 RESULTADOS E DISCUSSÕES

As propriedades termodinâmicas da água para o ciclo de Rankine foram adquiridas de duas maneiras: para a análise analítica, o software CATT forneceu tais propriedades explicitadas ao decorrer da resolução e para a simulação, o EES ofereceu bibliotecas abrangendo as propriedades demonstradas pela "Array Table" na Figura 10.

A vazão mássica através da turbina foi determinada de maneira analitica e simulada no EES através das equações de balanço de massa. O balanço de energia foi usado para encontrar a fração de vapor retiradas em cada estágio. Analiticamente, a fração extraída no primeiro estágio foi de 0,1498 e no segundo estágio 0,1172; o valor para o fluxo de massa que entra na turbina foi de 93,86 [kg/s]; no primeiro estágio de 14,06 [kg/s]; no segundo estágio de 11,00 [kg/s] e no terceiro estágio de 68,80 [kg/s]. Com o EES os resultados foram: 0,1497 para a fração no primeiro estágio, 0,1149 paa o segundo estágio e os valores para a vazão mássica consistiram em 93,69 [kg/s] para a entrada na turbina, 14,02 [kg/s] para o primeiro, 10,76 [kg/s] para o segundo e 68,9 [kg/s] para o terceiro estágio.

Para o cálculo da eficiência térmica encontrou-se os fluxos de trabalho das turbinas e bombas, bem como o fluxo de calor transferido na caldeira, na modelagem e simulação, que estão distribuídos na Tabela 2.

	\dot{w}_T (kJ/kg)	$\dot{w}_B(\text{kJ/kg})$	$\dot{q}_{ent}({ m kJ/kg})$	η (%)
Analítico	1073,75	8.45	2470,5	43,12
Numérico	1076	8,465	2471	43,19

Tabela 2 - Resultados obtidos pela modelagem e simulação do ciclo de Rankine.

Fonte: Próprios autores.

O ciclo estudado possui quatro niveis de pressão: 8 kPa para o condensador, 300 kPa no terceiro estágio da tubina e no AAA aberto, 2000 kPa no segundo estágio da turbina e o AAA fechado, 8000 kPa na caldeira o primeiro estágio da turbina. O diagrama T-s da Figura 11 obtido após a simulação indica os niveis de pressão citados e as caracteristicas de cada estado. As bombas operam de maneira isentrópica, por isso, os estados 1-2 e 3-4 são

sobrepostos no diagrama contendo pequenas diferenças de temperatura. O funcionamento da caldeira ocorre a pressao constante de 8000 kPa e 480 °C, no ponto 5, onde liquido saturado proveniente do AAA fechado, a uma temperatura de 205 °C, troca calor até se tornar vapor superaquecido no ponto 6 ao entrar no primeiro estágio da turbina. Os três estágios da turbina são isentrópicos que atuam em diferentes pressões, pontos 7, 8 e 9. No purgador, o consensado é estrangulado da pressão do aquecedor fechado ao nível de pressão do aquecedor aberto, pontos 10 e 11.

Analisando os resultados obtidos para as propriedades termodinamicas, vazão mássica fluxos de trabalho e calor e eficiência térmica, analiticamente e através do EES, percebe-se que são valores próximos, evidenciando a eficácia da aplicabilidade do software na simulação de sistemas de potência a vapor.

A Figura 14 mostra os dados de saída do exemplo do SRA da rotina do EES. O sistema utiliza água amônia como par de substâncias, com P_{high} igual a 13,5 [bar] e P_{low} igual a 1,7 [bar].

Observa-se, que T_2 aumenta com a introdução do calor no ponto 1, vaporizando a água da solução: T_1 = 353,1 [K] e T_2 = 388,10 [K], a solução torna-se vapor superaquecido com a concentração de amônia em 0,909. Após, a solução retorna para a fase líquida à temperatura de condensação com T_4 igual a 300,1 [K] devido a retirada do calor de condensação para o meio esterno.

Após passar pela válvula no estado 5 temos P_5 igual a 1,7 [bar] devido a evaporação de uma parcela de água com $T_5=252,9$ [K].

Ainda no início do ciclo, parte da solução é direcionada ao trocador de calor evidenciando a concentração x_3 baixa com 0,307 de amônia, com temperatura e pressão altas: T_3 = 388,1[K]. e P_3=13,5 [bar]. Após passar pela válvula a solução absorve vapor de água do evaporador. Considerando o fluxo de calor no evaporador de 108,5 [kJ/s], fluxo de calor no gerador de 336,9 [kJ/s] e o trabalho na bomba desprezível, temos o COP de 0,322. Este coeficiente é razoavelmente pequeno quando comparando ao ciclo de compressão a vapor.

Apesar de existir uma diferença entre o rendimento do SRA com o ciclo movido a energia elétrica, é possível atingir valores para o COP útil através da energia térmica. Entende-se que a energia térmica, como a energia solar e a cogeração, faz com que o sistema

apresente-se como uma possibilidade viável, menos prejudicial ao meio ambiente e com o aproveitamento de recursos descentralizados na refrigeração.

Ressalta-se que a análise foi realizada com uma configuração de SRA simples e que este poderia sofrer alterações capazes de aumentar a eficiência do ciclo com inserção de equipamentos como o retificador. Este iria reduzir a quantidade de vapor d'água no ciclo, aumentando a concentração de amônia. Além disso, observou-se, em testes externos no EES, que diminuindo P_{low} obtinha-se um COP cada vez mais significante.

6 CONCLUSÃO

O estudo através da simulação dos ciclos de Rankine e de refrigeração por absorção demonstrou o efetivo funcionamento do software EES, contribuindo de forma ágil e econômica para a análise de sistemas estudados.

O ciclo de Rankine regenerativo tem eficiência térmica maior que o ciclo de rankine simples onde a eficiência está na faixa de 35 a 39 porcento, isso ocorre pois há um melhor aproveitamento do calor transferido pela fonte térmica, para o aquecimento e a vaporização da água de alimentação na caldeira. No entanto, devido ao reduzido fluxo de vapor pela turbina após a extração de parte do vapor, a produção de trabalho por este ciclo é menor. A incorporação de mais aquecedores possibilita um aumento na eficiência.

O software CATT, foi utilizado como auxílio na obtenção analítica do ciclo de Rankine, onde se calculou as entalpias e entropias em cada componente do ciclo de rankine regenerativo múltiplo e evidenciou resultados satisfatórios com relação à simulação do EES.

No caso do ciclo de refrigeração por absorção, observou-se facilidade de manipulação na linguagem programável dos exemplos contidos na biblioteca do mesmo. O Coeficiente de Performance foi de 0,322. Comparando com o sistema de compressão a vapor simulado por Damasceno e Torres (2012) em que o COP apresenta-se entre 1,8 a 2,15, nota-se que o sistema de compressão apresenta maior coeficiente. Para Cantarutti (2011, apud GORDON E NG, 2000) o coeficiente de performance do ciclo de absorção é relativamente menor devido a entropia no momento de conversão da energia térmica, a qual não implica quando da utilização da energia elétrica. Para efeitos comparativos considerou-se que a simulação dos autores foi realizada no EES, com diferentes tipos de refrigerantese que os sistemas possui componentes, processos termodinâmicos e dados de entradas distintos. Muito embora haja essa diferença no COP a refrigeração por absorção apresenta uma característica ótima para o atual momento energético que é a utilização da energia térmica.

A vista disso, concluímos que as ferramentas utilizadas, realmente auxiliam na compreensão dos problemas estudados, e podem contribuir no processo de ensinoaprendizagem nas disciplinas de engenharia, inclusive apresentam-se com potencial aplicabilidade para a produção científica nas universidades e em seus eventos acadêmicos. Assim, considera-se alcançados os objetivos inicialmente destacados deste trabalho, considerando que a didática de simulação orienta de forma completa o discente em relação aos sistemas analisados.

REFERÊNCIAS

CANTARUTTI, B. R. Análise Teórico-Experimental de um Sistema de Refrigeração por Absorção de Simples Efeito Utilizando H2O-LiBr. Dissertação (Mestrado em Conversão de Energia) – Instituto de Engenharia Mecânica, Universidade Federal de Itajubá. Itajubá, 2011.

ÇENGEL, Y.A. BOLES, M.A., Termodinâmica. 7. ed. São Paulo: McGraw-Hill, 2013.

CERANTO, F. A. A. et al. Modelando Sistemas Térmicos com o Engineering Equation Solver (EES):Facilidade De Programação e Obtenção de Resultados. In: XIX Congresso Nacional de Estudantes de Engenharia Mecânica. São Carlos – SP, 2012.

COSTENARO, R. A. **Cálculo de Parâmetros de Desempenho de uma Instalação de Geração de Potência a Vapor com Carvão Pulverizado**. Monografia (Graduação em Engenharia Mecânica) – Departamento de Engenharia Mecânica. Universidade Federal do Rio Grande do Sul. Porto Alegre, 2011.

DAMASCENO, M. A. S. S.; TORRES, E.A. **Simulação Computacional para um Sistema de Refrigeração por Compressão.** In: VI Congresso Nacional de Engenharia Mecânica. Campina Grande – Paraíba, 2010.

GUIMARÃES, L. G. M. Modelagem e Construção de Protótipo de Refrigerador por Absorção de Vapor de Baixa Potência Operando com o Par Água-Brometo de Lítio e Utilizando Fontes Térmicas de Baixa Temperatura. Departamento de Engenharia Mecânica. São João Del-Rei, 2011.

JUCÁ, P. C. S. Desempenho de um Sistema de Refrigeração Por Absorção de Brometo de Lítio-Água Utilizando Aquecimento Solar; Florianópolis, 1980.

MASCARENHAS, M. M. Análise da Viabilidade Técnica e Econômica da Implantação de Sistemas de Cogeração Operando com um Ciclo Rankine Orgânico. Rio de Janeiro: UFRJ / Escola Politécnica, 2014.

MAZIERO, V. F. **Desenvolvimento e teste de um programa Computacional para simulação de plantas Térmicas e de potência**. Dissertação (Mestrado em Engenharia Mecânica).Universidade Estadual Paulista "Júlio de Mesquita Filho". Ilha Solteira - SP, 2012.

MENNA, M. R. M. Modelagem e Análise de Custo de Sistemas de Refrigeração por Absorção. Toledo - PR, 2008.

OLIVEIRA, J. A. Análise de um Sistema de Condicionamento de Ar Pelo Ciclo de Adsorção Utilizando Energia Solar. Universidade Federal de Mato Grosso. Cuiabá - MT, 2015.

PANOSSO, G.C. **Métodos de simulação para ciclos de Rankine.** Dissertação (Mestrado em Engenharia Mecânica) – Universidade Federal do Rio Grande do Sul. Porto Alegre, 2003.

PAZ, A. E. C. **Simulação de Sistemas Térmicos de Potencia para Geração de Energia Elétrica.**Dissertação (Mestrado em Engenharia Elétrica) – Universidade Federal do Rio Grande do Sul. Porto Alegre, 2002. PEREIRA, F. L. Manual Básico do Software EES – Engineering Equation Solver (Versão 1.0). Faculdade SATC, Departamento de Engenharia Mecânica. Criciúma – SC, 2013.

PESSOA, J. L. N.; GHISI, E. **Estado Da Arte Em Eficiência Energética: Sistemas De Condicionamento De Ar.** Centro Brasileiro de Eficiência Energética em Edificações. Florianópolis, 2015.

ROSA, A. Projecto e Dimensionamento De Um Protótipo De Uma Instalação De Fabrico De Gelo Com Energia Solar. Instituto Politécnico de Setúbal. Portugal, 2012.

SHAPIRO, H. N.; MORAN, M. J. **Princípios de Termodinâmica para Engenharia.** Tradução e revisão de Gisele Maria Ribeiro. Rio de Janeiro, 2012.

SILVA, A. M.; SANTOS, T. S.; MOREIRA, H.L. Modelagem Termodinâmica da Utilização do Vapor das Instalações do Hospital Universitário da UFPI– HU para Geração de Energia Elétrica; In: VIII Congresso Nacional de Engenharia Mecânica. Uberlândia – MG, 2014.

SOUZA, A. T. et al. Uso Da Modelagem EES Para Monitoramento dos Parâmetros de Efluentes Não Domésticos. Revista Petra. v. 1, n. 1, p. 40-63, jan./jul. [S.L.] 2015.

SOUZA, L. M. P. et al. **Software para Cálculo do COP em um Sistema de Refrigeração em Cascata CO2/R134a**. In: Simpósio do Programa de Pós – Graduação em Engenharia Mecânica. Uberlândia – MG. 2014.

TASSINI, J. O. Eficiência Energética em Sistemas de Refrigeração Industrial: Estudo de Caso. Guaratinguetá, 2012.

ANEXO A – Código eleborado para a simulação do ciclo de Rankine com múltiplos aquecedores

"CICLO DE RANKINE REGENERATIVO COM MÚLTIPLOS AQUECEDORES"

"!DADOS:"

- p[6] = 8[MPa]*Convert(MPa;kPa)
- T[6] = 480[C]
- p[7] = 2[MPa]*Convert(MPa;kPa)
- p[8] = 0,3[MPa]*Convert(MPa;kPa)
- p[9] = 8[kPa]
- T[5] = 205[C]
- p[5] = 8[MPa]*Convert(MPa;kPa)
- x[10] = 0
- p[10] = 2[MPa]*Convert(MPa;kPa)
- x[3] = 0
- p[3] = 0,3[MPa]*Convert(MPa;kPa)
- W_dot_liq = 100[MW]*Convert(MW;kW)

"PROPRIEDADES TERMODINÂMICAS:"

"!Ponto 1:"

x[1] = 0 "!Líquido Sat."

p[1] = p[9]

s[1]=Entropy(Steam;x=x[1];P=P[1])

"!Ponto 2:"

s[2]=s[1]

p[2] = p[8]

h[2]=Enthalpy(Steam;s=s[2];P=P[2])

"!Ponto 3:"

h[3]=Enthalpy(Steam;x=x[3];P=P[3])

s[3]=Entropy(Steam;x=x[3];P=P[3])

"!Ponto 4:"

s[4]=s[3]

p[4] = p[6]

```
h[4]=Enthalpy(Steam;s=s[4];P=P[4])
```

"!Ponto 5:"

h[5]=Enthalpy(Steam;T=T[5];P=P[5])

"!Ponto 6:"

h[6]=Enthalpy(Steam;T=T[6];P=P[6])

s[6]=Entropy(Steam;T=T[6];P=P[6])

"!Ponto 7:"

s[7]=s[6]

h[7]=Enthalpy(Steam;P=P[7];s=s[7])

"!Ponto 8:"

s[8]=s[6]

h[8]=Enthalpy(Steam;P=P[8];s=s[8])

"!Ponto 9:"

s[9]=s[6]

h[9]=Enthalpy(Steam;P=P[9];s=s[9])

"!Ponto 10:"

h[10]=Enthalpy(Steam;x=x[10];P=P[10])

"!Ponto 11:"

h[11]=h[10] "!Proc. Isoentálpico"

p[11] = p[8]

"CÁLCULO DA FRAÇÃO DE VAPOR EXTRAÍDA DA TURBINA"

 $y_{h} = (h[5] - h[4])/(h[7] - h[10])$

 $y_2 = (y_{h}(h_2) - h_{1}) + (h_3) - h_{2}))/(h_{8} - h_{2})$

"BALANÇOS DE ENERGIA NAS TURBINAS, BOMBAS E CALDEIRA"

 $w_t = (h[6] - h[7]) + (1 - y_{linha})^*(h[7] - h[8]) + (1 - y_{linha} - y_{2linha})^*(h[8] - h[9])$

 $w_b = (h[4] - h[3]) + (1 - y_{linha} - y_{2linha})*(h[2] - h[1])$

 $q_{entra} = h[6] - h[5]$

"CÁLCULO DA EFICIÊNICA TÉRMICA"

 $eta = (w_t - w_b)/q_entra$

"CÁLCULO DO FLUXO DE MASSA QUE ENTRA NA TRUBINA"

```
W_dot_liq = m_dot[6]^*(w_t - w_b)
```

"BALANÇO DE MASSA:"

 $m_dot[5] = m_dot[6]$

 $m_dot[4] = m_dot[6]$

 $m_dot[3] = m_dot[6]$

 $m_dot[9] = (1 - y_linha - y_2linha)*m_dot[6]$

 $m_dot[1] = m_dot[9]$

 $m_dot[2] = m_dot[9]$

```
m_dot[7] = y_linha*m_dot[6]
```

 $m_dot[10] = m_dot[7]$

 $m_dot[11] = m_dot[7]$

 $m_dot[8] = y_2linha*m_dot[6]$

"DETERMINAÇÃO DAS ENTROPIAS E TEMPERATURAS DO DIAGRAMA T-s:"

"!Entropias:"

s[5]=Entropy(Steam;T=T[5];P=P[5])

s[10]=Entropy(Steam;x=x[10];P=P[10])

s[11]=Entropy(Steam;h=h[11];P=P[11])

"!Temperaturas:"

T[7]=Temperature(Steam;P=P[7];s=s[7])

T[8]=Temperature(Steam;P=P[8];s=s[8])

T[2]=Temperature(Steam;P=P[2];s=s[2])

T[3]=Temperature(Steam;x=x[3];P=P[3])

T[4]=Temperature(Steam;P=P[4];s=s[4])

T[10]=Temperature(Steam;x=x[10];P=P[10])

ANEXO B – Código salvo no menu "Examples" do EES contendo a simulação do sistema de refrigeração por absorção.

{!ABSORPTION CYCLE CALCULATION USING AN EXTERNAL PROCEDURE}

\$TabStops 0,2 2,5 in

FUNCTION tk(T) {converts from C to K}

tk:=ConvertTemp('C'; 'K'; T) "It is easier to type tk(T) than ConvertTemp('C', 'K', T)"

END

"!Generator"

P_high=13,5 [bar]

m_dot_1=1 "reference flowrate"

CALL NH3H2O(123;TK(80 [C]); P_high; 0,38: T_1; P_1; x_1; h_1; s_1; u_1; v_1; Qu1)

CALL NH3H2O(128;TK(115 [C]); P_high; 1: T_2; P_2; x_2; h_2; s_2; u_2; v_2; Qu2)

CALL NH3H2O(128;TK(115 [C]);P_high; 0: T_3; P_3; x_3; h_3; s_3; u_3; v_3; Qu3)

m_dot_1=m_dot_2+m_dot_3 "overall mass balance"

m_dot_1*x_1=m_dot_2*x_2+m_dot_3*x_3 "ammonia balance"

h_1*m_dot_1-h_2*m_dot_2-h_3*m_dot_3+Q_gen=0 "energy balance"

"!Condenser"

CALL NH3H2O(123; TK(27 [C]); P_high; x_2: T_4; P_4; x_4; h_4; s_4; u_4; v_4; Qu4)

 $Q_cond=(h_2-h_4)*m_dot_2$

"!Throttle"

P_low=1,7 [bar]

CALL NH3H2O(234;P_low;x_2; h_4: T_5; P_5; x_5; h_5; s_5; u_5; v_5; Qu5) "isenthalpic"

"!Evaporator"

CALL NH3H2O(123;TK(-1 [C]); P_low; x_2: T_6; P_6; x_6; h_6; s_6; u_6; v_6; Qu6)

 $Q_evap=m_dot_2*(h_6-h_5)$

CALL NH3H2O(238;P_low; x_2;1: T_min; P_m_6; x_m_6; h_m_6; s_m_6; u_m_6; v_m_6; Qu6m)

"T6m is the temperature at which all of the refrigerant is vapor"

"!Absorber"

CALL NH3H2O(123;TK(27 [C]);P_low;x_1: T_7; P_7; x_7; h_7; s_7; u_7; v_7; Qu7)

h_9=h_10 "isenthalpic"

h_6*m_dot_2+h_10*m_dot_3-Q_abs=h_7*m_dot_1 "energy Balance"

"!Generator Heat Exchanger"

h_7=h_8 "neglect pump work"

 $m_dot_1*(h_1-h_8)=m_dot_3*(h_3-h_e)$

CALL NH3H2O(234;P_high;x_3;h_e: T_9; P_9; x_9; h_9; s_9; u_9; v_9; Qu9)

CALL NH3H2O(123;T_7;P_high;x_3: T_m_9; P_m_9; x_m_9; h_m_9; s_m_9; u_m_9; v_m_9; Qu9m)

"T_7=T_8 is the lowest possible temperature at state 9"

 $epsilon = (h_3-h_e)/(h_3-h_m_9)$

"!Overall"

COP=Q_evap/Q_gen

CheckQ=Q_gen+Q_evap-Q_abs-Q_cond "Check the overall energy balance"