

UNIVERSIDADE FEDERAL DO OESTE DO PARÁ – UFOPA INSTITUTO DE ENGENHARIA E GEOCIÊNCIAS – IEG BACHARELADO INTERDISCIPLINAR EM CIÊNCIA E TECNOLOGIA

JOSÉ SILVAN BATISTA MOTA JUNIOR

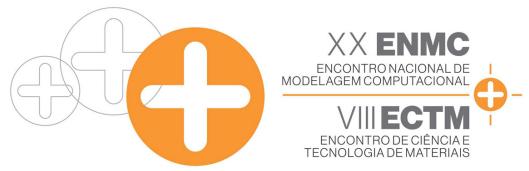
TRANSFORMADA DE PARK PARA ANÁLISE DINÂMICA DE MÁQUINA DE INDUÇÃO

JOSÉ SILVAN BATISTA MOTA JUNIOR

TRANSFORMADA DE PARK PARA ANÁLISE DINÂMICA DE MÁQUINA DE INDUÇÃO

Trabalho de Conclusão de Curso apresentado ao Bacharelado Interdisciplinar em Ciência e Tecnologia para obtenção do grau de Bacharel em Ciência e Tecnologia na Universidade Federal do Oeste do Pará, Instituto de Engenharia e Geociências.

Orientador: Marcel Antonionni de Andrade Romano



16 a 19 de Outubro de 2017 Instituto Politécnico - Universidade do Estado de Rio de Janeiro Nova Friburgo - RJ

SIMULAÇÃO DE PARK PARA ANALISE DINÂMICA DE MÁQUINA DE INDUÇÃO

José Silvan Batista Mota Junior¹ - silvanmotajr@gmail.com Prof. Msc. Marcel Antonionni de Andrade Romano² - antonionni@gmail.com

¹Universidade Federal do Oeste do Pará, Instituto de Engenharia e Geociências - Santarém, PA, Brasil

Resumo.

O motor de indução recebe em seu rotor um tensão induzida gerada no estator. Exercer o controle deste fluxo é essencial para definição de velocidade e torque do motor. Neste contexto, o presente trabalho abordou a transformação de Park como ferramenta para a analise dinâmica do motor a indução e simulou as equações resultantes demonstrando o que foi abordado matematicamente.

Keywords: Transformada de Park, Motor de Indução, Simulação

1. INTRODUÇÃO

O funcionamento do motor de indução assemelha-se ao funcionamento de um transformador, pois, o rotor recebe uma tensão induzida, gerada pelo campo girante do estator. O estator é alimentado por tensões trifásicas balanceadas, fazendo circular corrente trifásica equilibrada que produz um campo magnético (Fitzgerald et all, 2006). A principal razão para a análise dq em motores de indução é controlá-los usando os princípios do controle vetorial.

Na maioria dos livros essa análise é apresentada como a transformada de Park. Em Teixeira (2012) ditou que o objetivo da técnica de controle por orientação de campo é produzir um desacoplamento entre Conjugado e Fluxo de Campo, possibilitando controlar a máquina CA de forma semelhante ao controle de um motor CC.

Devido ao grande volume de processamento matemático inerente a essa técnica, o controle por orientação de campo só pode ser implementado na prática a partir de 1980, tornando-se economicamente viável, somente alguns anos depois, com o aumento da velocidade, aumento da capacidade de processamento matemático matricial e redução do custo de fabricação dos microprocessadores.

Este método de controle utiliza correntes para comandar o sistema e, sendo assim, faz-se necessário adicionar uma malha de realimentação para o controle da corrente do motor. O controle vetorial de máquinas de indução possui um grande campo de estudos e pesquisas científicotecnológicas por tratar-se de sistemas bastante complexos, o qual exige intensa computação em tempo real e maior velocidade de processamento, quando comparado ao controle escalar.

²Universidade Federal do Oeste do Pará, Instituto de Engenharia e Geociências - Santarém, PA, Brasil

O presente estudo visa demostrar o uso da transformada de Park na analise do motores de indução, onde simulará a transformação do eixos abc do estator em dois eixos ortogonais,dq.

Serão usados vetores espaciais como intermediário da transformação de enrolamentos de fase abc no seu equivalente dq, o qual será usado para análise dinâmica em regime transitório. Os fluxos concatenados do estator e do rotor $\vec{\lambda_a^s}(t)$ e $\vec{\lambda_a^s}(t)$ dependem do ângulo do rotor Θ_m , onde o sobrescrito "a" indica estator (Mohan, 2001).

Para análise de motores a indução em condições permanentes senoidais balanceadas, foram trocados os três enrolamentos por um enrolamento hipotético equivalente que produzia a mesma distribuição de *fmm* (Força magnetomotriz)no entreferro. Esse enrolamento único foi distribuído senoidalmente com o mesmo número de espiras N_s , com seu eixo magnético ao longo do vetor espacial corrente do estator e uma corrente \hat{I}_s (valor de pico de \hat{i}_s) que flui através dele.

O vetor espacial corrente do estator $\vec{\imath}_s(t)$, na Figura 1a, representa as correntes de fase $i_a(t)$, $i_b(t)$ e $i_c(t)$, que estão defasadas em 120 graus entre si. Um vetor espacial colinear da fmm $\vec{F}_s(t)$ está relacionado com $\vec{\imath}_s(t)$, da Eq. (1), por um fator N_s/p .

$$\vec{i_s}(t) = i_a(t) + i_b(t)e^{j2\pi/3} + i_c(t)e^{j4\pi/3}$$
(1)

Em Boldea & Nasar (1992) são necessários dois enrolamentos ortogonais tais que o torque e o fluxo dentro da máquina possam ser controlados de forma independente. A distribuição da *fmm* no entreferro pelos três enrolamentos de fase podem também ser produzidas por dois enrolamentos ortogonais (em qualquer instante), ver Fig. 1b, cada um distribuído senoidalmente com $\sqrt{\frac{3}{2}}N_S$ espiras: um enrolamento ao longo do eixo d e o outro ao longo o eixo q.

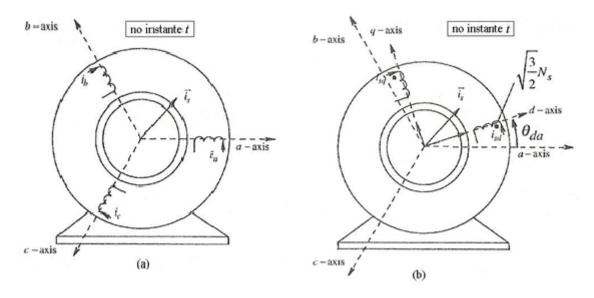


Figura 1- Representação da *fmm* do estator por enrolamentos dq equivalentes. Fonte: Mohan, 2001.

Esses enrolamentos dq podem estar em qualquer ângulo arbitrário Θ_{da} relacionados com o eixo da fase a. Entretanto, as correntes i_{sd} e i_{sq} nesses dois enrolamentos podem ter valores específicos, os quais podem ser obtidos pelo equacionamento da fmm produzida nos enrolamentos dq em relação à fmm produzida pelo enrolamento trifásico, e representados por um único

enrolamento com N_s espiras da Equação (2).

$$\frac{\sqrt{\frac{3}{2}}N_S}{p}(i_{sd} + ji_{sq}) = \frac{N_S}{p}\vec{i_s^d}(t)$$
 (2)

Onde p é o momento linear da rotação do eixo. Portanto, no caso de fases equilibradas temos que i_{rd} e i_{rq} são a projeções $\vec{i_s}(t)$ sobre o eixo d e q, respectivamente.

2. Transformação abc-dq0

A transformada de Park é uma transformação linear que simplifica modelos simétricos trifásicos. Ela transforma uma máquina simétrica trifásica em uma máquina simétrica bifásica, mantendo constante potência, torque e número de polos.

É importante frisar que os vetores espaciais em um instante de tempo t desta figura são expressos sem o sobrescrito "a" ou "A". A razão é que o eixo de referência é necessário somente para expressá-los matematicamente por meio de números complexos. Em outras palavras, esses vetores espaciais poderiam estar na mesma posição, independentemente da escolha do eixo de referência para expressá-los. Seja um sistema trifásico definidos pelos três fasores da Fig. 2, no tempo t o eixo d é dependente de θ_{da} em relação ao eixo a do estator, como na Equação (3):

$$\vec{i}_s(t) = \vec{i}_s^a(t)e^{-j\Theta \, da(t)} \tag{3}$$

Substituindo (3) em (1), temos:

$$\vec{i}_s(t) = i_a(t)e^{-j\Theta \, da(t)} + i_b(t)e^{-j(\Theta_{da(t)} - 2\pi/3)} + i_c(t)e^{-j(\Theta_{da(t)} - 4\pi/3)} \tag{4}$$

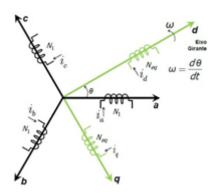


Figura 2- Fasores de um Sistema Trifásico

Equacionando os componentes da parte real com imaginária e separando i_{sd} e i_{sq} à direita temos a transformação dos três eixos nos eixos dq.

$$\begin{bmatrix} i_{sd}(t) \\ i_{sq}(t) \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\theta_{da}) & \cos(\theta_{da} - 2\pi/3) & \cos(\theta_{da} - 4\pi/3) \\ -\sin(\theta_{da}) & -\sin(\theta_{da} - 2\pi/3) & -\sin(\theta_{da} - 4\pi/3) \end{bmatrix} \begin{bmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{bmatrix}$$
(5)

No caso isolado, onde a soma das correntes das três fases é sempre igual a zero, as variáveis nos enrolamentos de fase abc podem ser calculadas em termos de variáveis de enrolamentos dq. Na Eq. (5), pode-se adicionar uma linha ao fundo para representar a condição de que a soma das três correntes de fase é igual a zero (i_0) . Invertendo a matriz resultante e descartando a última coluna cuja contribuição é zero, obtém-se a relação desejada na Eq. (6).

$$\begin{bmatrix} i_a(t) \\ i_b(t) \\ i_c(t) \end{bmatrix} = \sqrt{\frac{2}{3}} \begin{bmatrix} \cos(\theta_{da}) & -\sin(\theta_{da}) \\ \cos(\theta_{da} - 4\pi/3) & -\sin(\theta_{da} - 4\pi/3) \\ \cos(\theta_{da} - 2\pi/3) & -\sin(\theta_{da} - 2\pi/3) \end{bmatrix} \begin{bmatrix} i_{sd}(t) \\ i_{sq}(t) \end{bmatrix}$$
(6)

3. Resultados

A simulação demonstra a transformação dos eixos de tensão abc em dois eixos ortogonais dq. Assim, é possível vislumbrar os três sinais de corrente do estator e seu comportamento apôs a transformação. Está fora do escopo do deste trabalho aprofundar o controle de fluxo dos motores de indução. Com os polos abc alinhados simetricamente em 120° e amplitude máxima de 127V e frequência 60Hz, a tensão de cada polo apresentaram o comportamento mostrado da Figura 1.13 e as tensões dq0 apresentam o comportamento da Figura 1.14.

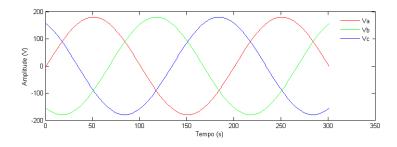


Figura 3- Tensão das fases a (em vermelho), b (em verde) e c (em azul)

É perceptível que as tensões são variantes senoidalmente com mesma amplitude 120°, demonstrando assim, fases simétricas e equilibradas. Tal normalidade refletiu na transformação de Park em sinais contínuos para d e q e ortogonais.

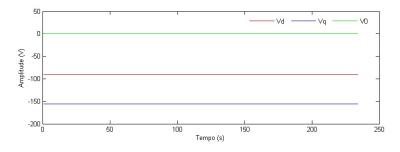
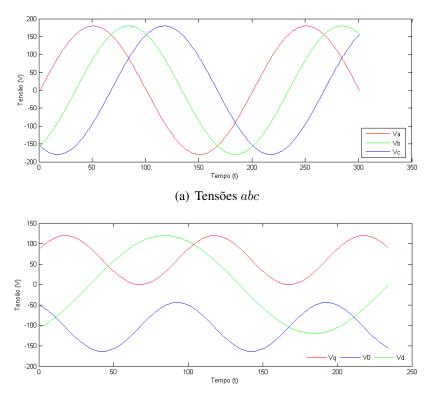


Figura 4- Tensão das fases d (em vermelho), 0 (em verde) e q (em azul)

Vejamos agora a simulação para uma situação de parâmetros assimétricos e desequilibrados. Foi simulada a situação em que um das fases está em assimetria, ou seja, em que uma das corrente está em posição angular inadequada. No caso a fase V_b está alterada em $90^{\rm o}$ e amplitude de V_a , como ilustrado na Fig.5.



(b) Transformação dq com sistema em desiquilibrio e assimetria.

Figura 5- Sistema em desiquilibrio e assimetria.

Observou-se que as modificação do sistema interferiu grandemente nos sinais, inclusive no sinal V_0 que devido a soma das tensões serem diferente de 0, nao permitindo assim, a ortogonalidade dos vetores q e d.

Considerações Finais

O principal propósito para a analise de motores de indução por meio da transformada de Park é controla-los utilizando os princípios do controle de campo. O presente trabalho simulou computacionalmente o comportamento dos sinais de tensão do estator trifásico, realizando assim, a transformada de Park.

Na simulação foi percebido claramente o efeito da transformação abc-dq no sinais de tensão do eixo do estator, confirmando assim, que quando o sistema encontra-se em equilíbrio e assimetria é possível obter dois vetor ortogonais entre sim. No entanto, quando o sistema encontra-se em assimetria a transformação entra em colapso.

REFERÊNCIAS

Fitzgerald, A.E.; Junior, C.K.; Umas, S.D. (2006), "Máquinas Elétricas com Introdução à Eletrônica de Potência", 6º ed., Bookman, Porto Alegre.

Boldea, I.; NASAR, S.A. (1995), "Vector Control of AC Drives", 1° ed., CRC Press LLC, Boca Raton. Mohan, N. (2001), "Advanced Electric Drives: Analysis, Control and Modeling using Simulink ®", 1° ed., MNPERE, Minneapolis.

Teixeira, D.C. N (2012), "Controle Vetorial do Motor de Indução Operando na Região de Enfraquecimento de Campo", Monografia, UFV, Viçosa.

APPENDIX A

```
%Simulção abc-dq0
clear, clc, clf;
% Vm e Ve são as amplitudes; T é o período e w a frequência.
Vm=127*sqrt(2);
Ve=127*sqrt(2);
w=2*pi*50;
T=1/50;
dt=0.0001;
k=0;
for t=0:dt:1.5*T
k=k+1;
tt(k)=t;
% Va, Vb e Vc sao as tensões das fases abc, respectivamente
Va(k) = Vm * sin(w*t);
Vb(k) = Ve * sin(w*t-(4*pi/3));
Vc(k) = Vm * sin(w*t+(4*pi/3));
end;
figure(1)
grid on;
plot(Va, 'r');
hold on;
plot(Vb,'g');
hold on;
plot(Vc)
k=0;
for t = (2*pi/(3*w)):dt:1.5*T
k=k+1;
% Transformação de Park
Vd(k) = (2/3) * (Va(k) * sin(w*t) + Vb(k) * sin(w*t-2*pi/3) + Vc(k) * sin(w*t+(2*pi/3))
Vq(k) = (2/3) * (Va(k) * cos(w*t) + Vb(k) * cos(w*t-2*pi/3) + Vc(k) * cos(w*t+2*pi/3));
Vo(k) = (1/3) * (Va(k) + Vb(k) + Vc(k));
end
figure (2)
grid on;
plot(Vd,'r');
hold on;
```

```
plot(Vq,'b');
hold on;
plot(Vo,'g')
```