Uma visita ao disco de Poincaré: proposta de material para aperfeiçoamento de professores

Carregando...
Imagem de Miniatura

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal do Oeste do Pará

Resumo

This work proposes a support material for teaching non-Euclidean geometries, which can be used during initial teacher training or teacher improvement. We will do this by means of a model of the hyperbolic geometry known as the Poincaré disk. This model has great importance in mathematics in part because it allows the visualization of the properties of this geometry. Thus, we expect the support material we produced to facilitate the study and interpretation of such properties, which make hyperbolic geometry so different from Euclidean geometry. The support material devotes an entire chapter to a historical approach to the development of non-Euclidean geometry. Another chapter is devoted to definitions and results of Euclidean geometry, and can be used to revisit these topics, regardless of the interest in the Poincaré disk.

item.page.resume

Este trabalho propõe um material de apoio para ensino de geometrias não euclidianas (GNE), que possa ser utilizado durante a formação inicial de professores ou formação continuada. Faremos isto por meio de um modelo da geometria hiperbólica conhecido como disco de Poincaré. Esse modelo tem grande importância dentro da matemática em parte por possibilitar a visualização das propriedades dessa geometria. Assim, esperamos que o material de apoio produzido facilite o estudo e interpretação de tais propriedades, que tornam a geometria hiperbólica tão diferente da euclidiana. O material de apoio dedica um capítulo inteiro a uma abordagem histórica do desenvolvimento das GNE. Outro capítulo é dedicado a definições e resultados da geometria euclidiana, e pode ser usado para revisitar esses tópicos, independente do interesse no disco de Poincaré.

Descrição

Citação

SOUZA, Arley Antes. Uma visita ao disco de Poincaré: proposta de material para aperfeiçoamento de professores. Orientador: Sebastián Mancuso. 2019. 35 f. Trabalho de Conclusão de Curso (Licenciatura Integrada em Matemática e Física) - UniversidadeFederal do Oeste do Pará, Santarém, 2019. Disponível em: https://repositorio.ufopa.edu.br/handle/123456789/1333

Avaliação

Revisão

Suplementado Por

Referenciado Por