Arquitetura CUDA: estudo de caso sobre a soma de vetores

Carregando...
Imagem de Miniatura

Data

Título da Revista

ISSN da Revista

Título de Volume

Editor

Universidade Federal do Oeste do Pará

Resumo

Resumo

O Aprendizado Profundo (Deep Learning) é uma subárea de Aprendizado de Máquina (Machine Learning), que investiga técnicas para simular o comportamento do cérebro humano. No presente trabalho apresenta-se uma análise de arquiteturas de Deep Learning na solução de um problema de Classificação. Para tanto, utilizou-se a base de dados wine quality dataset (Cortez et al., 2009). Foram analisadas 9 arquiteturas de Deep Learning,com variações no número de neurônios e camadas ocultas, de forma a comparar seus desempenhos usando as métricas: Acurácia, Precisão, Recall e F1 Score. Posteriormente foi utilizado o teste de Kruskal-Wallis para avaliar se há diferença estatisticamente significativa entre as arquiteturas com a finalidade de reduzir o custo computacional para futuras aplicações. Verificou-se que a diferença entre os desempenhos não é estatisticamente significativa (com α = 5%) para nenhuma das métricas utilizadas para este conjunto de dados, sendo assim possível usar a arquitetura menos complexa sem comprometer os resultados obtidos, reduzindo o custo computacional.

Descrição

Citação

SILVA, Henrique Matheus Ferreira da. Arquitetura CUDA: estudo de caso sobre a soma de vetores. Orientador: Anderson Alvarenga de Moura Meneses. 2017. 11 p. Trabalho de Conclusão de Curso - Artigo (Bacharelado Interdisciplinar em Ciência e Tecnologia) - Instituto de Engenharia e Geociências, Universidade Federal do Oeste do Pará, 2017. Disponível em: https://repositorio.ufopa.edu.br/handle/123456789/1511. Acesso em:

Avaliação

Revisão

Suplementado Por

Referenciado Por

Licença Creative Commons

Exceto quando indicado de outra forma, a licença deste item é descrita como Acesso Aberto